Supporting information

A）Equations 1 and 2：related to the chemical composition of each sample matrix and for calculate the amount of oxygen required for sample combustion；

B）Equations 3：real gas equation，used to calculate the O_{2} amount loaded in the digestion vessel；
C）Equation 4：Ideal gas equations，used to check the accuracy of Equation 3 in the working temperature and pressure．

$$
\begin{align*}
& C_{q} H_{r} N_{s} S_{t} O_{u}+\text { ? } q+\frac{r}{4}+0.3 s+t-\frac{u}{2} \text { 目 } O_{2} \rightarrow q \mathrm{CO}_{2}+\frac{r}{2} \mathrm{H}_{2} \mathrm{O}+\frac{s}{5} \mathrm{~N}_{2}+0.6 s \mathrm{NO}+t \mathrm{SO}_{2} \tag{Eq. 1}\\
& n_{s}=\underset{i=1}{N} \text { 『 } f_{i} \cdot \frac{m_{s}}{\sqrt{77_{i}}} \text { 『. 『 } q_{i}+\frac{r_{i}}{4}+0.3 s_{i}+t_{i}-\frac{u_{i}}{2} \text { 『 } \\
& P=\frac{n R T}{V}
\end{align*}
$$

$$
P=\frac{n R T}{V-n b}-a\left[\frac{n}{V} \frac{n}{2}^{2}\right.
$$

Eq. 4

Where:
m_{s} is the sample mass;
f_{i} is mass fraction and \dot{M}_{i} is the molar mass of an i component in the sample matrix;
P is the O_{2} pressure in the vessel;
V is the headspace volume of the vessel;
n is the number of O_{2} moles present in the combustion vessel;
R is the universal gas constant (0.082 atm $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$);
T is the temperature before combustion;
n_{S} is the number of O_{2} moles required to obtain a complete combustion;
a is the van der Waals constant that provides a correction for the intermolecular forces; and
b is the van der Waals constant that provides a correction for finite molecular size related to the volume of one mole of the atoms or molecules.

D) Instructions of how to fill the left side of data sheet (system conditions) used for predicting combustion

1°) Complete only the yellow cells presented in the related data sheet;
2°) Follow the instructions, as presented below as dialog boxes;
3°) Final data will be presented at the right side of the data sheet.

Stoichiometric combustion application using microwave-induced combustion

$$
\begin{equation*}
\mathrm{C}_{q} \mathrm{H}_{r} \mathrm{~N}_{s} \mathrm{~S}_{t} \mathrm{O}_{u}+\left(q+\frac{r}{4}+0.3 s+t-\frac{u}{2}\right) \mathrm{O}_{2} \rightarrow q \mathrm{CO}_{2}+\frac{r}{2} \mathrm{H}_{2} \mathrm{O}+\frac{s}{5} \mathrm{~N}_{2}+0.6 s \mathrm{NO}+t \mathrm{SO}_{2} \quad \text { (1) } \quad n_{s}=\sum_{i=1}^{N}\left(f_{i} \cdot \frac{m_{s}}{\bar{M}_{i}}\right) \cdot\left(q_{i}+\frac{r_{i}}{4}+0.3 s_{i}+t_{i}-\frac{u_{i}}{2}\right) \quad \text { (2) } \quad P V=n R T \tag{3}
\end{equation*}
$$

Only fill the yellow cells

E) Instructions of how to fill the central part of data sheet used for predicting combustion

Stoichiometric combustion application using microwave-induced combustion

Only fill the yellow cells
 for cellulose paper).

