Supporting information

- **A)** Equations 1 and 2: related to the chemical composition of each sample matrix and for calculate the amount of oxygen required for sample combustion;
- B) Equations 3: real gas equation, used to calculate the O_2 amount loaded in the digestion vessel;
- **C)** Equation 4: Ideal gas equations, used to check the accuracy of Equation 3 in the working temperature and pressure.

$$C_q H_r N_s S_t O_u + \mathbb{Z}q + \frac{r}{4} + 0.3s + t - \frac{u}{2} \mathbb{Z}O_2 \rightarrow qCO_2 + \frac{r}{2} H_2 O + \frac{s}{5} N_2 + 0.6sNO + tSO_2$$
 Eq. 1

$$n_s = \mathbb{Z} \underbrace{\mathbb{Z}f_i \cdot \frac{m_s}{M_i}}_{i=1} \mathbb{Z} \cdot \mathbb{Z}q_i + \frac{r_i}{4} + 0.3s_i + t_i - \frac{u_i}{2} \mathbb{Z}$$

$$P = \frac{nRT}{V}$$
 Eq. 3

$$P = \frac{nRT}{V - nb} - a \, \overline{z} \frac{n}{V} \overline{z}$$
 Eq. 4

Where:

 m_s is the sample mass;

 f_i is mass fraction and \dot{M}_i is the molar mass of an i component in the sample matrix;

P is the O₂ pressure in the vessel;

V is the headspace volume of the vessel;

n is the number of O_2 moles present in the combustion vessel;

R is the universal gas constant (0.082 atm L mol⁻¹ K⁻¹);

T is the temperature before combustion;

 $n_{\rm S}$ is the number of O₂ moles required to obtain a complete combustion;

a is the van der Waals constant that provides a correction for the intermolecular forces; and

b is the van der Waals constant that provides a correction for finite molecular size related to the volume of one mole of the atoms or molecules.

D) Instructions of how to fill the left side of data sheet (system conditions) used for predicting combustion

- 1°) Complete only the yellow cells presented in the related data sheet;
- 2°) Follow the instructions, as presented below as dialog boxes;
- 3°) Final data will be presented at the right side of the data sheet.

Stoichiometric combustion application using microwave-induced combustion

$$C_{q}H_{r}N_{s}S_{t}O_{u} + \left(q + \frac{r}{4} + 0.3s + t - \frac{u}{2}\right)O_{2} \rightarrow qCO_{2} + \frac{r}{2}H_{2}O + \frac{s}{5}N_{2} + 0.6sNO + tSO_{2} \quad (1) \\ n_{s} = \sum_{i=1}^{N} \left(f_{i} \cdot \frac{m_{s}}{\overline{M}_{i}}\right) \cdot \left(q_{i} + \frac{r_{i}}{4} + 0.3s_{i} + t_{i} - \frac{u_{i}}{2}\right) \quad (2)$$

$$PV = nRT \quad (3)$$

Only fill the yellow cells

In this cell, fill the sample mass, in grams.

In this cell, fill the oxygen pressure used in the vessel, in atmosphere.

In this cell, fill the room temperature, in Kelvin.

In this cell, fill the vessel headspace volume (total volume of vessel minus the volume of absorption solution minus quartz holder volume), in liter.

In this cell, fill the mass of igniter (cellulose paper) used, in grams

E) Instructions of how to fill the central part of data sheet used for predicting combustion

Stoichiometric combustion application using microwave-induced combustion

Only fill the yellow cells

System condition	
Sample mass, g:	0.45
O ₂ pressure in the vessel, atm:	20
R, (atm·L)/(mol·K):	0.082
Temperature before combustion, K:	298
Headspace volume of vessel, L:	0.068
Mass of igniter for combustion, g:	0.018

Camanaumdi	Mass	Molar		Elemental ratio					
Compound:	fraction:	weight:	С	н	N	S	0		
Α	1.0	84.18	,	6	12				
В	0.0	0	/						
С	0.0	0	/						
D	0.0	0	/						
		/							
Igniter (i.g. ce	llulose pape	er)	_/	6	10			5	
			1						

Data obtained by equation of ideal gas

48.8 mmol of O₂ necessary to complete sample combustion

55.7 mmol of O₂ present in combustion vessel

14 % of O₂ excess considering stoichiometric combustion

0.6 mmol of O from sample

32.7 mmol of CO₂

32.6 mmol of H₂O

0.0 mmol of N₂ from 50% of total N present in sample

0.0 mmol of NO from 50% of total N present in sample

0.0 mmol of SO₂

15 atm* (final pressure) at 314 K

*Only for sample matrix as C_qH₂O₄ (without S and N).

In these lines, fill each cell according to the elemental ratio presented in sample composition.

In these lines, fill each cell according to the elemental ratio of igniter (example already filled for cellulose paper).

The stoichiometric amount of oxygen, available for combustion, will be presented in this cell (in percentage). It is important to notice that a minimum excess oxygen must be used to ensure complete sample combustion