Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Materials

Oxidative coupling of tetraalkynyltin with aldehydes leading to alkynyl ketones

Andrey S. Levashov^{a,*}, Nicolay A. Aksenov^{b,c}, Inna V. Aksenova^b and Valeriy V. Konshin^a

^aDepartment of Organic Chemistry & Technologies, Kuban State University, 149 Stavropolskaya str., 350040 Krasnodar, Russian Federation

^bDepartment of Chemistry, North Caucasus Federal University, 1a Pushkina str., 355009 Stavropol, Russian Federation

^cPeoples Friendship University Russia, 6 Miklukho Maklaya St, Moscow 117198, Russia

Table of Contents

Supplementary Table 1. The results of the optimization experiments	2
Spectra of starting reagents and alkynyl ketones 4	1

Supplementary Table 1. The results of the optimization experiments

A 2-mL sealable Wheaton vial was charged with 0.05 mmol of Lewis acid ($ZnCl_2$, $SnCl_4$), 0.123 mmol of (PhC=C)₄Sn **1a** and 0.5 ml of a dry solvent. Then the vial was flushed with a stream of dry argon, and 0.492 mmol (or 0.984 mmol if the ratio **1a** : **2a** was set as 1 : 8) of benzaldehyde **2c** was added subsequently through a syringe. The mixture was stirred for the indicated time (see Table below). The progress of the reaction was monitored by GC-MS (before the analysis, samples taken at regular intervals were quenched with saturated aqueous NH4Cl).

No	Ratio 1a : 2c	Solvent	Temperature, °C	Catalyst (mol %)	Time, h	Yield of 4 , (or 3 + 4) %
1	1.4	DCE*	60	SnCl ₄	1	87
	1.4			(10)	3	99
2	1:4	DCE	60	ZnCl ₂	1	77
				(10)	3	100
3	1:4	DCE	60	ZnCl ₂		
				(10)	1	10 + 80
				Et ₃ N 2 equv		
4	1:8	DCE	60	SnCl₄ (10)	1	13
					3	11
					5	69
	1:8	DCE	60	SnCl₄ (25)	0,75	36
5					3	28
				(-)	5	67
6	1:4	PhMe	60	SnCl₄ (10)	3	2 + 98
	1:4	PhMe	60	SnCl ₄	1	100
7				(10)	3	
,				Acetone		100
				4ч equv		
8	1:4	PhMe	60	ZnCl ₂	1	100
				(10)	3	100
9	1:4	PhMe	60	ZnCl ₂	0,5	2 + 56
				(10)	1	86
				Acetone 4ч equv	3	99
10	1:8	PhMe	60	SnCl₄	1	49
				(10)	3	86
11	1:8	PhMe	60	SnCl₄ (25)	5	82
12	1:8	PhMe	60	ZnCl ₂ (10)	2	76
12					4	84
		PhMe	40	ZnCl ₂ (10)	2	6 + 34
13	1:8				3	89
					5	100
14	1:8	DhMa	00	ZnCl ₂	2	75
		1.0	Phivie	80	(10)	3

					5	78			
15	1:8	PhMe	25	ZnCl ₂ (10)	5	0			
16	1:4	dioxane	60	ZnCl ₂ (10)	1	1+5			
					3	2			
					24	4			
17	1:4	dioxane	60	SnCl₄ (10)	1	1			
					3	0,1+2			
					5	2			
18	1:4	DMF	60	ZnCl ₂ (10)	1	0			
					3	0			
					24	1			
19	1:4	DMF	60	SnCl₄	1	0			
				(10)	3	0			
20	1:4	1:4	THF	1:4 THF 60	60	60	ZnCl ₂	1	0,5
							(10)	3	7

DCE = 1,2-dichloroethane

IR spectrum (KBr) of 4-formylphenyl benzoate (2i)

Spectra of starting reagents and alkynyl ketones 4

¹H NMR spectrum (400 MHz, CDCl₃) of 4-formylphenyl benzoate (2i)

¹³C NMR spectrum (100 MHz, CDCl₃) of 4-formylphenyl benzoate (2i)

Mass-spectrum (EI, 70 eV) of 4-formylphenyl benzoate (2i)

IR spectrum (KBr) of 4-formylphenyl 4-*tert*-butylbenzoate (2j)

¹³C NMR spectrum (100 MHz, CDCl₃) of 4-formylphenyl 4-*tert*-butylbenzoate (**2j**)

Mass-spectrum (EI, 70 eV) of 4-formylphenyl 4-tert-butylbenzoate (2j)

IR spectrum (liquid film) of 1,3-diphenylprop-2-yn-1-one (4ac)

¹H NMR spectrum (400 MHz, CDCl₃) of 1,3-diphenylprop-2-yn-1-one (**4ac**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 1,3-diphenylprop-2-yn-1-one (**4ac**)

Mass-spectrum (EI, 70 eV) of 1,3-diphenylprop-2-yn-1-one (4ac)

IR spectrum (KBr) of 3-phenyl-1-[4-(trifluoromethyl)phenyl]prop-2-yn-1-one (4ad)

¹H NMR spectrum (400 MHz, $CDCl_3$) of 3-phenyl-1-[4-(trifluoromethyl)phenyl]prop-2-yn-1-one (**4ad**)

 ^{13}C NMR spectrum (100 MHz, CDCl₃) of 3-phenyl-1-[4-(trifluoromethyl)phenyl]prop-2-yn-1-one (**4ad**)

Mass-spectrum (EI, 70 eV) of 3-phenyl-1-[4-(trifluoromethyl)phenyl]prop-2yn-1-one (**4ad**)

IR spectrum (KBr) of 1-(4-bromophenyl)-3-(4-methylphenyl)prop-2-yn-1-one (**4be**)

¹H NMR spectrum (400 MHz, CDCl₃) of 1-(4-bromophenyl)-3-(4-methylphenyl)prop-2-yn-1-one (**4be**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 1-(4-bromophenyl)-3-(4-methylphenyl)prop-2-yn-1-one (**4be**)

Mass-spectrum (EI, 70 eV) of 1-(4-bromophenyl)-3-(4-methylphenyl)prop-2yn-1-one (**4be**)

IR spectrum (KBr) of 1-(4-nitrophenyl)-3-phenylprop-2-yn-1-one (4af)

¹H NMR spectrum (400 MHz, CDCl₃) of 1-(4-nitrophenyl)-3-phenylprop-2-yn-1-one (**4af**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 1-(4-nitrophenyl)-3-phenylprop-2-yn-1-one (**4af**)

Mass-spectrum (EI, 70 eV) of 1-(4-nitrophenyl)-3-phenylprop-2-yn-1-one (**4af**)

IR spectrum (KBr) of 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one (4ag)

¹H NMR spectrum (400 MHz, CDCl₃) of 1-(4-methoxyphenyl)-3-phenylprop-2yn-1-one (**4ag**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one (**4ag**)

Mass-spectrum (EI, 70 eV) of 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one (**4ag**)

IR spectrum (KBr) of 1-(2,3-dimethoxyphenyl)-3-phenylprop-2-yn-1-one (**4ah**)

¹H NMR spectrum (400 MHz, CDCl₃) of 1-(2,3-dimethoxyphenyl)-3-phenylprop-2-yn-1-one (**4ah**)

 ^{13}C NMR spectrum (100 MHz, CDCl_3) of 1-(2,3-dimethoxyphenyl)-3-phenylprop-2-yn-1-one (**4ah**)

Mass-spectrum (EI, 70 eV) of1 -(2,3-dimethoxyphenyl)-3-phenylprop-2-yn-1one (**4ah**)

IR spectrum (KBr) of 4-(3-phenylprop-2-ynoyl)phenyl benzoate (4ai)

¹H NMR spectrum (400 MHz, CDCl₃) of 4-(3-phenylprop-2-ynoyl)phenyl benzoate (**4ai**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 4-(3-phenylprop-2-ynoyl)phenyl benzoate (**4ai**)

IR spectrum (KBr) of 4-(3-phenylprop-2-ynoyl)phenyl 4-*tert*-butylbenzoate (**4aj**)

¹H NMR spectrum (400 MHz, CDCl₃) of 4-(3-phenylprop-2-ynoyl)phenyl 4*tert*-butylbenzoate (**4aj**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 4-(3-phenylprop-2-ynoyl)phenyl 4*tert*-butylbenzoate (**4aj**)

IR spectrum (KBr) of 3-phenyl-1-{4-[(trimethylsilyl)ethynyl]phenyl}prop-2yn-1-one (**4bk**)

 ^1H NMR spectrum (400 MHz, CDCl_3) of 3-phenyl-1-{4- [(trimethylsilyl)ethynyl]phenyl}prop-2-yn-1-one (**4bk**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 3-phenyl-1-{4-[(trimethylsilyl)ethynyl]phenyl}prop-2-yn-1-one (**4bk**)

Mass-spectrum (EI, 70 eV) of 3-phenyl-1-{4-[(trimethylsilyl)ethynyl]phenyl}prop-2-yn-1-one (**4bk**)

IR spectrum (KBr) of 3-(4-methylphenyl)-1-phenylprop-2-yn-1-one (**4bc**)

¹H NMR spectrum (400 MHz, CDCl₃) of 3-(4-methylphenyl)-1-phenylprop-2yn-1-one (**4bc**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 3-(4-methylphenyl)-1-phenylprop-2yn-1-one (**4bc**)

Mass-spectrum (EI, 70 eV) of 3-(4-methylphenyl)-1-phenylprop-2-yn-1-one (**4bc**)

IR spectrum (KBr) of 3-phenyl-1-[4-(phenylethynyl)phenyl]prop-2-yn-1-one (4al)

 ^{1}H NMR spectrum (400 MHz, CDCl_3) of 3-phenyl-1-[4-(phenylethynyl)phenyl]prop-2-yn-1-one (**4al**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 3-phenyl-1-[4-(phenylethynyl)phenyl]prop-2-yn-1-one (**4al**)

Mass-spectrum (EI, 70 eV) of 3-phenyl-1-[4-(phenylethynyl)phenyl]prop-2yn-1-one (**4al**)

IR spectrum (KBr) of 3-phenyl-1-(2-thienyl)prop-2-yn-1-one (4am)

¹H NMR spectrum (400 MHz, CDCl₃) of 3-phenyl-1-(2-thienyl)prop-2-yn-1-one (4am)

¹³C NMR spectrum (100 MHz, CDCl₃) of 3-phenyl-1-(2-thienyl)prop-2-yn-1one (**4am**)

Mass-spectrum (EI, 70 eV) of 3-phenyl-1-(2-thienyl)prop-2-yn-1-one (4am)

IR spectrum (KBr) of 1-(5-nitro-2-thienyl)-3-phenylprop-2-yn-1-one (4an)

¹H NMR spectrum (400 MHz, CDCl₃) of 1-(5-nitro-2-thienyl)-3-phenylprop-2yn-1-one (**4an**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 1-(5-nitro-2-thienyl)-3-phenylprop-2yn-1-one (**4an**)

Mass-spectrum (EI, 70 eV) of 1-(5-nitro-2-thienyl)-3-phenylprop-2-yn-1-one (**4an**)

IR spectrum (KBr) of 3-(4-chlorophenyl)-1-phenylprop-2-yn-1-one (4cc)

 ^1H NMR spectrum (400 MHz, CDCl_3) of 3-(4-chlorophenyl)-1-phenylprop-2-yn-1-one (4cc)

¹³C NMR spectrum (100 MHz, CDCl₃) of 3-(4-chlorophenyl)-1-phenylprop-2yn-1-one (**4cc**)

Mass-spectrum (EI, 70 eV) of 3-(4-chlorophenyl)-1-phenylprop-2-yn-1-one (**4cc**)

IR spectrum (KBr) of 1-phenylhept-2-yn-1-one (**4dc**)

¹H NMR spectrum (400 MHz, CDCl₃) of 1-phenylhept-2-yn-1-one (**4dc**)

¹³C NMR spectrum (100 MHz, CDCl₃) of 1-phenylhept-2-yn-1-one (**4dc**)

Mass-spectrum (EI, 70 eV) of 1-phenylhept-2-yn-1-one (4dc)

