Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

A Direct Crossed Polymerization of Triphenylamines and Cyclohexanones *via* C=C bond formation: the Method and Its Bioimaging Application

Hengchang Ma,* Haiying Cao, Lei Lei, Zengming Yang, Yucheng Ma, Xiaolin Guan, Dedai Lu, Ziqiang Lei*

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China

Contents

1. Synthetic routes of PDD and NTBD	S2
2. Spectroscopic studies and GPC date	S2~S4
3. NMR spectra	S5~S7

Scheme S1. Synthetic routes of PDD and NTBD.

Figure S1. (a) Emission spectra of different mass concentration of LP in DMF. (b) Plot of the relative emission intensity (I/I_0) at 565 nm wavelength. I_0 = PL spectra intensity of LP mass concentration of 6 x 10⁻³ g/L. (Inset) Photographs of LP under UV lamp. Concentration: 6 x 10⁻³ g/L (left) and 6 x 10⁻² g/L (right), λ_{ex} = 435 nm.

Figure S2. (a) Emission spectra of different mass concentration of BP in THF. (b) Plot of the relative PL intensity (I/I_0) at 580 nm. I_0 = PL emission intensity of BP mass concentration of 1 x 10⁻² g/L. (Inset) Photographs of P1 under UV lamp. Concentration: 1 x 10⁻² g/L (left) and 1 x 10⁻¹ g/L (right). λ_{ex} = 480 nm.

Figure S3. (a) Emission spectra of LP (in THF) with temperature increased from 0 to 60 ^oC by a step size of 5 ^oC. (b) The relative emission intensity (I/I_0) of LP under different temperature. (λ_{ex} = 435 nm; I_0 = intensity of LP under 0 ^oC). (Inset) Photographs of LP at 0 ^oC and 60 ^oC under UV lamp.

Figure S4. (a) Emission spectra of BP (in THF) with temperature increased from 0 to 60 $^{\circ}$ C by a step size of 5 $^{\circ}$ C. (b) The relative emission intensity (*I*/*I*₀) of BP under different temperature. λ_{ex} = 480 nm; *I*₀ = intensity of BP under 0 $^{\circ}$ C). (Inset) Photographs of BP at 0 $^{\circ}$ C and 60 $^{\circ}$ C.

Figure S5. Hydrodynamic diameter distribution of LP in water (50 g/mL).

Figure S6. The PL intensity and the maximum wavelength of LP vs the solvent polarity parameters Δf .

Figure S7. The PL intensity and the maximum wavelength of BP vs the solvent polarity parameters Δf .

	$\mathbf{M}_{\mathbf{n}}$	$\mathbf{M}_{\mathbf{w}}$	$\mathbf{M}_{w}/\mathbf{M}_{n}$
LP	20500	29800	1.45
BP	11000	15800	1.44
A 10		B 40 10 20	
	Retention Time (min)	Retention Time (min)	

Table S1. The GPC date for the linear and branched polymers.

