Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information for

Water-soluble lanthanide complexes with a helical ligand modified for strong luminescence in a wide pH region

- Shuhei Ogata,^a Tomohito Shimizu,^a Takashi Ishibashi,^a Yushi Ishiyone,^a Mitsuhiro Hanami,^a Minami Ito,^a Ayumi Ishii,^a Shogo Kawaguchi,^b Kunihisa Sugimoto^b and Miki Hasegawa^{*a}
- ^a Collage of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5259, Japan, E-mail: <u>hasemiki@chem.aoyama.ac.jp</u>;
- ^b Research & Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

Contents

- 1. Scheme S1 Syntheses of L^{COOH} and LnL^{COOH}.
- Fig. S1 Attenuated total reflection FT-IR spectra of L^{COOH} (a), EuL^{COOH} (b), GdL^{COOH} (c), and TbL^{COOH} (d).
- 3. Fig. S2 Excitation spectra of LnL^{COOH} in the solid state. Ln = Gd (a), Eu, (b), and Tb (c).
- **4.** Fig. S3 Decay profiles for ff emission of EuL^{COOH} (a), and TbL^{COOH} (b) in the solid state at rt (black line) and 77 K (colored line). $\lambda_{ex} = 280$ nm.
- 5. Caluculation of luminescence rate constants and efficiency of EuL^{COOH}.
- 6. Fig. S4 Excitation spectra of LnL^{COOH}. Ln = Gd (a), Eu (b and c), and Tb (e and f). The solvent is H₂O (a, b and d) and D₂O (b and d). Excitation spectra monitored ad fluorescence (λ_{mon} = 336 nm) and phosphorescence band (λ_{mon} = 438 nm) of GdL^{COOH} are shown in purple and blue, respectively.
- 7. Fig. S5 Decay profiles for ff emissions of EuL^{COOH} (a) and TbL^{COOH} (b) in H₂O (black line), and D₂O (colored line). $\lambda_{ex} = 280$ nm.
- **8.** Fig. S6. ESI(+)-MS for the signals related to EuL^{COOH} (a), GdL^{COOH} (b), and TbL^{COOH} (c) in aqueous solution
- 9. Fig. S7. Decay profiles of EuL^{COOH} in aqueous solution at various pH values. $\lambda_{ex} = 280$ nm. $\lambda_{mon} = 616$ nm.
- **10.** Fig. S8. Decay profiles curves of EuL^{COOH} in D₂O at basic condition. $\lambda_{ex} = 280$ nm. $\lambda_{mon} = 616$ nm.
- **11. Fig. S9** ESI(+)-MS for the signals related to EuL^{COOH} in aqueous solution at various pH values. L^{COOH} in aqueous solution at pH 2.0 is shown in (d). * is due to a fragment.
- **12. Fig. S10** Electronic absorption (a) and luminescence spectrum (b) of EuL^{COOH} at pH 3.5 after adjustment by hydrochloric acid from pH 11.9. $\lambda_{ex} = 315$ nm.
- **13.** Fig. S11 Luminescence spectrum of EuL^{COOH} in aqueous solution at pH 2.1. $\lambda_{ex} = 315$ nm.

- 14. Fig. S12 Electronic absorption spectra of L^{COOH} in water at acidic condition.
- **15. Fig. S13** Electronic absorption (a) and luminescence spectrum (b) of EuL^{COOH} at pH 6.3 after adjustment by NaOH aq. from pH 1.9. $\lambda_{ex} = 315$ nm.
- **16.** Fig. S14 Decay profiles of EuL^{COOH} in H₂O (a) and D₂O (b) at acidic condition. $\lambda_{ex} = 280$ nm. $\lambda_{mon} = 616$ nm.
- **17. Fig. S15** ¹H-NMR of LH in CDCl₃ (TMS).
- **18. Fig. S16** ¹H-NMR of L^{COOEt} in CDCl₃ (TMS).
- **19. Fig. S17** ¹H-NMR of L^{COOH} in methanol-d₄.
- **20.** References

Scheme S1 Syntheses of $L^{\rm COOH}$ and $LnL^{\rm COOH}$

Fig. S1 Attenuated total reflection FT-IR spectra of L^{COOH} (a), EuL^{COOH} (b), GdL^{COOH} (c), and TbL^{COOH} (d).

Fig. S2 Excitation spectra of LnL^{COOH} in the solid state. Ln = Gd (a), Eu (b), and Tb (c).

Fig. S3 Decay profiles for ff emission of EuL^{COOH} (a) and TbL^{COOH} (b) in the solid state at rt (black line) and 77 K (colored line). $\lambda_{ex} = 280$ nm.

Caluculation of luminescence rate constants and efficiency of EuL^{COOH}.

The total emission quantum yield of Eu sensitized by the ligand $L^{\text{COOH}}(\phi_{\text{L-Ln}})$ is determined by the triplet yield of the ligand (ϕ_{ISC}), the efficiency of energy trasfer (η_{EnT}) and the efficiency of metal-centerd luminescence (ϕ_{Ln}) as following equation.¹

$$\phi_{\text{L-Ln}} = \phi_{\text{ISC}} \ge \eta_{\text{EnT}} \ge \phi_{\text{Ln}}$$
(1)

The value of ϕ_{ISC} can be approximately 1, because of the $n\pi^*$ character of the ligand and the high spin-orbit coupling constant of the lanthanid ion.^{2,3} ϕ_{Ln-Ln} can be calculated from radiative rate constat (k_{R}) and non-radiative rate constant (k_{NR}) the following equation.

$$\phi_{\text{Ln-Ln}} = k_{\text{R}} / k_{\text{R}} \ge k_{\text{NR}} = k_{\text{R}} \ge \tau_{\text{obs}}$$
(2)

The radiativ rate constat can be calculated from equation (3).^{4,5}

$$k_{\rm R} = A_{\rm MD} \ge n^3 \ge (\mathbf{I}_{\rm tot} / \mathbf{I}_{\rm MD})$$
(3)

Where, A_{MD} is the spontaneous emission probability of the ${}^5D_0 \rightarrow {}^7F_1$ transiton of Eu ion in vacuo, *n* is the refractive index, I_{tot} / I_{MD} represents the ratio of the total integrated intensity of the corrected Eu luminescence spectrum to the integrated intensity of the magnetic-dipole transition.

Fig. S4 Excitation spectra of LnL^{COOH}. Ln = Gd (a), Eu (b and c), and Tb (e and f). The solvent is H₂O (a, b and d) and D₂O (b and d). Excitation spectra monitored ad fluorescence ($\lambda_{mon} = 336$ nm) and phosphorescence band ($\lambda_{mon} = 438$ nm) of GdL^{COOH} are shown in purple and blue, respectively.

Fig. S5 Decay profiles for ff emissions of EuL^{COOH} (a) and TbL^{COOH} (b) in H₂O (black line) and D₂O (colored line). $\lambda_{ex} = 280$ nm.

Fig. S6. ESI(+)-MS for the signals related to EuL^{COOH} (a), GdL^{COOH} (b), and TbL^{COOH} (c) in aqueous solutions

Fig. S7. Decay profiles of EuL^{COOH} in aqueous solution at various pH values. $\lambda_{ex} = 280$ nm. $\lambda_{mon} = 616$ nm.

Fig. S8. Decay profiles of EuL^{COOH} in D₂O at basic condition. $\lambda_{ex} = 280$ nm. $\lambda_{mon} = 616$ nm.

Fig. S9 ESI(+)-MS for the signals related to EuL^{COOH} in aqueous solution at various pH values. L^{COOH} in aqueous solution at pH 2.0 is shown in (d). * is due to a fragment.

Fig. S10 Electronic absorption (a) and luminescence spectrum (b) of EuL^{COOH} at pH 3.5 after adjustment by hydrochloric acid from pH 11.9. $\lambda_{ex} = 315$ nm.

Fig. S11 Luminescence spectrum of EuL^{COOH} in aqueous solution at pH 2.1. $\lambda_{ex} = 315$ nm.

Fig. S12 Electronic absorption spectrum of L^{COOH} in water at acidic condition.

Fig. S13 Electronic absorption (a) and luminescence spectrum (b) of EuL^{COOH} at pH 6.3 after adjustment by NaOH aq. from pH 1.9. $\lambda_{ex} = 315$ nm.

Fig. S14 Decay profiles of EuL^{COOH} in H₂O (a) and D₂O (b) at acidic condition. $\lambda_{ex} = 280$ nm. $\lambda_{mon} = 616$ nm.

Fig. S15 1 H-NMR of LH in CDCl₃ (TMS).

Fig. S16 ¹H-NMR of L^{COOEt} in CDCl₃ (TMS).

Fig. S17 ¹H-NMR of L^{COOH} in methanol-d₄.

References

- 1. A. Beeby, L. M. Bushby, D. Maffeo and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 2002, 1, 48.
- 2. M. A. El-Sayed, J. Chem. Phys., 1963, 38, 2834.
- 3. M. L. Bhaumik and M. A. El-Sayed, J. Chem. Phys., 1965, 42, 787.
- 4. A. R. Ramya, D. Sharma, S. Natarajan and M. L. Reddy, *Inorg. Chem.*, 2012, **51**, 8818.
- 5. S. Quici, G. Marzanni, M. Cavazzini, P. L. Anelli, M. Botta, E. Gianolio, G. Accorsi, N. Armaroli and F. Barigelletti, *Inorg. Chem.*, 2002, **41**, 2777.