Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information for

Redox-Mediated 3D Graphene based nanoscoop design for Ultracapacitor Applications

Pallavi Rani, Suman Kumari Jhajharia, Kaliaperumal Selvaraj*

Nano and Computational Materials Lab., Catalysis Division, CSIR-National Chemical Laboratory, Pune- 411008, India Phone (off.): +91-20-25 90 22 62, (Lab.): +91-20-25 90 22 79, Fax (off.): +91-20-25-90 26 33 E-mail: k.selvaraj@ncl.res.in; kselva@gmail.com

Contents

1. Supplementary Figures	S1-S7
2. Supplementary Table	S8
3. Supplementary References	S9

Supplementary Figures

Fig. S1: Photos of setup for synthesis of polystyrene beads (a) GO suspension and PS colloidal solution (b) sample vial with PS-GO and PS-rGO solution with different reaction time (c) synthesis of PS-rGO composites (d) obtained PS-rGO powder product (e) treatment of PS-rGO powder with THF

Intensity 1	00 75 50 25	Elapsed Time Mean Diam. Rel. Var. Skew	00:10:00 275.8 nm 0.000 0.021	
		50.0		500.0
Diameter (nm)				

Wallimoual Size Distribution

_									
	d(nm)	G(d)	C(d)	d(nm)	G(d)	C(d)	d(nm)	G(d)	C(d)
	266.7	0	0	276.4	88	82	286.4	0	100
	267.6	0	0	277.3	49	97	287.3	0	100
	268.5	0	0	278.2	9	100	288.2	0	100
	269.3	0	0	279.1	0	100	289.2	0	100
	270.2	0	0	280.0	0	100	290.1	0	100
	271.1	0	0	280.9	0	100	291.0	0	100
	272.0	0	0	281.8	0	100	292.0	0	100
	272.8	0	0	282.7	0	100	292.9	0	100
	273.7	21	6	283.6	0	100	293.9	0	100
	274.6	61	25	284.5	0	100	294.8	0	100
	275.5	100	55	285.5	0	100	295.8	0	100

Fig. S2: Z-average particle size of polystyrene beads

Run	NODIIIty	Zeta Potential (mv)	Rel. Residual
1	-3.00	-56.86	0.0123
2	-3.05	-57.79	0.0137
3	-2.97	-56.41	0.0126
4	-3.05	-57.91	0.0140
5	-2.96	-56.23	0.0127
6	-3.03	- 57.43	0.0125
7	-2.99	-56.62	0.0144
8	-3.01	-57.05	0.0137
9	-2.97	-56.38	0.0115
10	-3.03	- 57.53	0.0114
Mean	-3.01	- 57.02	0.0129
Std. Error	0.01	0.19	0.0003
Combined	-3.01	- 57.02	0.0036

Fig. S3: Zeta potential measurement of polystyrene colloidal particle (PS)

Fig. S4: Zeta potential measurement of Graphene oxide (GO)

Fig. S5: SEM images of displaying PS-GO interaction in (A) 1h (B) 2h

Fig. S6: SEM image of 3D graphene nanoscoop prepared after (a) THF treatment and (b) thermal treatment

Fig.S7: TG of GO, PS and 3D Graphene.

As shown in Fig.S6, TG curve of GO shows significant weight losing events. The first event at around 110C is related to the absorbed water while the second significant loss around 250C is attributed to the decomposition of oxygen-containing functional group, yeiding CO, CO_2 and steam. The PS spheres start losing weight at 350°C and were burned completely at around 450°C. However, as expected, the PS and graphene shell began to decompose significantly at a temperature of about 450°C. Therefore, to retained spherical shell, heat treatment at a temperature of 420°C under heating condition (air,heating rate 5C per min, held at 420°C for 2 h) was required.

Fig. S8: SEM image of 3D graphene showing the effect of increasing heat rate with curvature during thermal treatment (A) 5° C/ min (B) 30° C/min

Fig. S9: EDS Spectra of 3D graphene representing atomic percentage of elements present

Fig. S10: Charge-discharge curve of rGO at different current densities in (a) 1M KOH (b) 1M KOH + 0.08 M K₃Fe(CN)₆ electrolytes

Fig. S11: Bode Plot of 3D Graphene in 1M KOH and 1M KOH+ 0.08M K₃Fe(CN)₆

As shown in Fig S10, Bode plot of 3D graphene in different electrolyte system. Bode plot automatically reflects the system dynamics with respect to the frequency. Bode plot shows that irrespective of the frequency the modulus (|Z|) is always higher for the redox mediated 3D graphene than that of 3D graphene. The difference in |Z| between these two systems at any given frequency implies that it is the actual contribution of the redox system towards the total impedance and that it is largely an imaginary component of impedance.

Supplementary Table

Electrode	Redox additive electrolyte	Specific capacitance(F/g)	Ref.
material			
Co–Al LDH	$KOH + K_4Fe(CN)_6$	317 at 2 A/g	S1
	KOH + K ₃ Fe(CN ₎₆	712 at 2 A /g	S1
CuS	KOH + Na ₂ S + S	2175 at 15 A /g	S2
Activated carbon	H ₂ SO ₄ + KI	912 at 2 mA/cm ²	S3
	H ₂ SO ₄ + KBr	572 at 2 mA/cm ²	S3
Activated carbon	$H_2SO_4 + VOSO4$	630.6 at 1 mA/cm ²	S4
Activated carbon	H ₂ SO ₄ + hydroquinone	901 at 2.65 mA/ cm ²	S5
Activated carbon	H ₂ SO ₄ + hydroquinone	220 at 2.65 mA/cm ²	S6
Polyaniline -	H ₂ SO ₄ + hydroquinone	553 at 1 A/g	S7
graphene			
MnO ₂	KOH + p-phenylenediamine	325.24 at 1 A/g	S8
Activated carbon	KOH + p-phenylenediamine	605.22 at 1 A/g	S9
SWCNT	KOH + p-phenylenediamine	162.66 at 1 A/g	S10
MWCNTs	KOH + m-phenylenediamine	78 at 0.5 A/g	S11
MWCNTs	H ₂ SO ₄ + indigo carmine	50 at 0.88 mA/cm ²	S12
Activated carbon	H ₂ SO ₄ + methylene blue	23 F/g	S13
Activated carbon	H ₂ SO ₄ + lignosulfonates	178 at 0.1 A/g	S14
3D graphene	KOH + K₃Fe(CN) ₆	1830 F/g at 2 A/g 2091 F/g at 5 mV/s	Present work

Table S1. Performance of various carbon based electrode and redox electrolyte systems.

Supplementary References

- S1. L. H. Su, X. G. Zhang; C. H. Mi, B. Gao and Y. Liu, *Chem. Phys.*, 2009, **11**, 2195.
- S2. L. Qian, X. Tian; L. Yang, H. Yuan and D. Xiao, RSC Adv., 2013, 3, 1703.
- S3. S. T. S. Kumar, R. K. Selvan, Y. S. Lee and J. S. Melo, J. Mater. Chem.A, 2013, 1, 1086.
- S4. S. T. S. Kumar; R. K. Selvan; N. Ponpandian, J. S. Melo and Y. S. Lee, J. Mater. Chem.A, 2013, 1, 7913.
- S5. S. Roldan, C. Blanco; M. Granda, R. Menendez and R. Santamaria, Angew. Chem., Int. Ed., 2011, 50, 1699.
- S6. S. Roldan, M. Granda; R. Menendez; R. Santamariia and C. Blanco, J. Phys. Chem. C, 2011, 115, 17606.
- S7. W. Chen; R. B. Rakhi and H. N. Alshareef, Nanoscale, 2013, 5, 4134.
- S8. Y. H. Jun; W. J. Huai; F. L. Qing, L. Y. Zhen; C. S. Hong, C. Yuan; W. J. Li, H. M. Liang, L. J. Ming; L. Zhang and H. Y. Fang, Sci. China: Chem., 2012, 55, 1319.
- S9. J. Wu, H. Yu; L. Fan, G. Luo; J. Lin and M. Huang, J. Mater. Chem., 2012, 22, 19025;
- S10. H. Yu; J. Wu, J. Lin; L. Fan, M. Huang; Y. Lin, Y. Li; F. Yu and Z. Qiu, ChemPhysChem, 2013, 14, 394.
- S11. H. Yu, L. Fan, J. Wu, Y. Lin, M. Huang, J. Lin and Z. Lan, RSC Adv., 2012, 2, 6736.
- S12. S. Roldan, Z. Gonalez, C. Blanco, M. Granda, R. Menendez and R.Santamaria, Electrochimi. Acta, 2011, 56, 3401.
- S13. S. Roldan, M. Granda, R. Menendez, R. Santamaria and C. Blanco, *Electrochimi. Acta*, 2012, 83, 241.
- S14. G. Lota and G. Milczarek, *Electrochem. Commun.*, 2011, 13, 470.