ELECTRONIC SUPPORTING INFORMATION

Biodegradable herbicidal ionic liquids based on synthetic auxins and analogues of betaine

Michał Niemczak,^{*,†} Łukasz Chrzanowski, [†] Tadeusz Praczyk, [‡] and Juliusz Pernak[†]

[†] Department of Chemical Technology, Poznan University of Technology, Poznan 60-965,

Poland

[‡] Institute of Plant Protection – National Research Institute, Poznan 60-318, Poland

* Corresponding author at: Poznan University of Technology, ul. Berdychowo 4,

Poznań 60-965, Poland; Tel.: +48 616653581. E-mail: michal.niemczak@put.poznan.pl

Salt Alkyl Anion		Chemical	Molecular weight	Calcu	lated v [%]	alues	Obtained values [%]			
			Iormula	[g mol ⁻¹]	C	Η	Ν	C	Н	Ν
[C ₁₂ Bet][Cl]	C ₁₂ H ₂₅	Cl	C ₁₆ H ₃₄ ClNO ₂	307.9	62.41	11.13	4.55	62.77	10.88	4.79
1	C ₁₂ H ₂₅	2,4-D	$C_{13}H_{17}Cl_2NO_5$	338.1	46.17	5.07	4.14	46.49	5.22	3.89
2	C ₁₂ H ₂₅	MCPA	C ₁₄ H ₂₀ ClNO ₅	317.8	52.92	6.34	4.41	52.77	6.16	4.72
3	C ₁₂ H ₂₅	MCPP	C ₁₅ H ₂₂ ClNO ₅	331.8	54.30	6.68	4.22	54.03	6.46	4.50
4	C ₁₂ H ₂₅	Dicamba	$C_{13}H_{17}Cl_2NO_5$	338.1	46.17	5.07	4.14	45.90	5.37	4.29

Table S1. Elemental analysis for salts with dodecylbetainium cation

The following abbreviations were used to explain the multiplicities:

s = singlet, d = doublet, q - quartet, m = multiplet, dd - doublet of doublets.

Figure S1. ¹H NMR spectrum of dodecylbetainium chloride - [C₁₂Bet][Cl].

3

Figure S2. ¹³C NMR spectrum of dodecylbetainium chloride - [C₁₂Bet][Cl].

Figure S3. ¹H NMR spectrum of cocoamidopropylbetainium chloride - [CAPBet][Cl].

Figure S4. ¹³C NMR spectrum of cocoamidopropylbetainium chloride - [CAPBet][Cl].

Figure S5. ¹H NMR spectrum of dodecylbetainium 2,4-dichlorophenoxyacetate (1).

7

Figure S6. ¹³C NMR spectrum of dodecylbetainium 2,4-dichlorophenoxyacetate (1).

2016-02-29 18:18:19

Acquisition Time (sec)	0.6401	Comment	IK-6	Date	May 17 2014	Date Stamp	May 17 2014	
File Name	C:\Users\Michał	Niemczak\Desktop\Niemcz	z - DR\NMR\UAM	Ilona/IK-6-C13.fid/fid		Frequency (MHz)	75.46	
Nucleus	13C	Number of Transients	1072	Original Points Count	10291	Points Count	16384	
Pulse Sequence	s2pul	Receiver Gain	34.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	7264.3770	
Spectrum Type	STANDARD	Sweep Width (Hz)	16077.17	Temperature (degree C	AMBIENT TEMP	PERATURE		
1.00 ¹¹¹ IK-6-C13 0.95 ¹¹¹	¹³ C NMF 31.4, 50.1	R (75 MHz, DM 1, 63.1, 63.3, 66.0	SO-d₆) δ p 0, 114.9, 12	pm = 13.9, 21.9 22.2, 124.4, 127.), 22.2, 26.0 8, 129.2, 1	0, 28.6, 28.8, 29 52.7, 165.5, 169	.1, .6.	
0.85 0.80 0.75 0.70 0.70	N	CI		о О С ₁₂ Н ₂₅	€H ₃ ∩ CH ₃	ОН		-28.79 -29.12
0.60- 	- 169.6					29	-50.12	-25.97 -28.62
0.20						9		50
0.10								722
		a a data di sana shana ku shanya sa data. Mana ka sa	Laster, tilter its liter	dentities that the base stream in the based of the	and a start has the sublident of	تساوينا والمنتجوب والتحجون	and the second	and the second
	84 176 16	8 160 152 144	136 128	120 112 104 Chemical	96 88 Shift (ppm)	80 72 64 5	6 48 40	32 24 16 8 0

Figure S7. ¹H NMR spectrum of dodecylbetainium 4-chloro-2-methylphenoxyacetate (2).

Figure S8. ¹³C NMR spectrum of dodecylbetainium 4-chloro-2-methylphenoxyacetate (2).

1 2 1 1 1 1 1 1 1 1 1 1

Figure S10. ¹³C NMR spectrum of dodecylbetainium 2-(4-chloro-2-methylphenoxy)propionate (3).

Figure S11. ¹H NMR spectrum of dodecylbetainium 3,6-dichloro-2-methoxybenzoate (4).

Figure S12. ¹³C NMR spectrum of dodecylbetainium 3,6-dichloro-2-methoxybenzoate (4).

Figure S13. ¹H NMR spectrum of cocoamidopropylbetainium 2,4-dichlorophenoxyacetate (5).

15

Figure S14. ¹³C NMR spectrum of cocoamidopropylbetainium 2,4-dichlorophenoxyacetate (5).

Figure S15. ¹H NMR spectrum of cocoamidopropylbetainium 4-chloro-2-methylphenoxyacetate (6).

Figure S16. ¹³ C NMR	spectrum of cocoamide	propylbetainium 4-cl	hloro-2-methylphenoxyacetat	te (6).
8				

Figure S17.	¹ H NMR s	spectrum of coco	amidoprop	vlbetainium 2-	4-chloro-2-methylphenox	y)propionate (7	').
A C C C				/		//	

Figure S18. ¹³C NMR spectrum of cocoamidopropylbetainium 2-(4-chloro-2-methylphenoxy)propionate (7).

Figure S19.	¹ H NMR s	pectrum of	cocoamidopi	ropylbetainium (3.6-dichloro-2	2-methoxybenzoate	(8).
						= = = = = = = = = = = = = = = =	· ~ / ·

Figure S20.	¹³ C NMR spectrum of	cocoamidopropylbetainium	n 3,6-dichloro-2-methoxybenzoate	e (8).
-------------	---------------------------------	--------------------------	----------------------------------	-----------------

Acquisition Time (sec)	0.6401	Comment	[CAP-Bet][Dikamba]		Date	Jul 26 2015
Date Stamp	Jul 26 2015	File Name	C:\Users\Michał Nie	emczak\Desktop\Niemcz -	DR\NMR\UAM\Niem	cz\CAP-Bet-Dikamba-C13	.fid\fid
Frequency (MHz)	75.46	Nucleus	13C	Number of Transients	1988	Original Points Count	9772
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	34.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	7184.5972	Spectrum Type	STANDARD	Sweep Width (Hz)	15267.18	Temperature (degree C	AMBIENT TEMPERATURE

Salt	Alleyl	Anion	Cation – signals from protons						
Sait	Аікуі	Amon	C-CH ₂ -N	N-CH ₃	N-CH ₂ -C	<u>N</u> <u>H</u> -СО			
[C ₁₂ Bet][Cl]	$C_{12}H_{25}$	Cl	3.49(m)	3.21(s)	4.38(s)				
1	$C_{12}H_{25}$	2,4-D	3.49(m)	3.15(s)	3.77(s)				
2	$C_{12}H_{25}$	МСРА	3.48(m)	3.12(s)	3.67(s)				
3	$C_{12}H_{25}$	MCPP	3.48(m)	3.13(s)	3.74(s)				
4	$C_{12}H_{25}$	Dicamba	3.46(m)	3.13(s)	3.77(s)				
[CAPBet][Cl]	CAP ^a	Cl	3.58(m)	3.24(s)	4.45(s)	8.25(t)			
5	CAP ^a	2,4-D	3.50(m)	3.15(s)	3.87(s)	8.04(t)			
6	CAP ^a	MCPA	3.54(m)	3.18(s)	4.03(s)	8.11(t)			
7	CAP ^a	MCPP	3.51(m)	3.15(s)	3.82(s)	8.07(t)			
8	CAP ^a	Dicamba	3.52(m)	3.17(s)	3.96(s)	8.07(t)			

Table S2. Shifts in ¹H NMR, ppm

^a cocoamidopropyl; s - singlet; t - triplet; m - multiplet

Table S3. Shifts in ¹³C NMR, ppm

Salt	Alkyl	Anion	Cation – signals from carbon atoms						
San		Amon	C- <u>C</u> H ₂ -N	N- <u>C</u> H ₃	N- <u>C</u> H ₂ -C	NH- <u>C</u> O	С- <u>С</u> ООН		
[C ₁₂ Bet][Cl]	$C_{12}H_{25}$	Cl	64.1	50.6	60.5		166.3		
1	$C_{12}H_{25}$	2,4-D	63.3	50.1	63.1		165.5		
2	$C_{12}H_{25}$	MCPA	63.7	50.0	62.9		165.2		
3	$C_{12}H_{25}$	MCPP	63.3	50.1	63.0		165.4		
4	$C_{12}H_{25}$	Dicamba	63.1	50.1	63.0		165.3		
[CAPBet][Cl]	CAP ^a	Cl	62.4	50.7	60.6	172.5	166.3		
5	CAP ^a	2,4 - D	61.6	50.3	62.9	172.4	165.6		
6	CAP ^a	MCPA	61.8	50.4	62.3	172.4	166.1		
7	CAPa	МСРР	61.5	50.2	63.2	172.4	165.6		
8	CAPa	Dicamba	61.8	50.4	62.6	172.4	165.8		

^a 3-cocoamidopropyl

Table S4. Viscosity values (Pa·s) for ILs 1-4, 6-8

п	A 111	Anion	Temperature [°C]							
112	AIKYI		20	30	40	50	60	70	80	
1	$C_{12}H_{25}$	2,4-D						1.7646	0.9038	
2	$C_{12}H_{25}$	MCPA				3.2349	1.4484	0.7164	0.3936	
3	$C_{12}H_{25}$	МСРР	64.679	19.573	6.9902	2.8573	1.3081	0.6574	0.3677	
4	$C_{12}H_{25}$	Dicamba			318.80	80.371	25.173	9.3479	3.8929	
6	CAP ^a	MCPA	495.83	123.84	37.152	13.069	5.2461	2.4611	1.2336	
7	CAPa	МСРР	300.11	76.929	23.794	8.6983	3.5709	1.6944	0.8782	
8	CAPa	Dicamba	3461.8	714.79	186.06	57.487	20.381	8.3412	3.7911	

Figure S21. Shear stress versus shear rate for ILs 1-4, 6-8

п	Alkyl	Anion	Temperature [°C]							
IL		Amon	20	30	40	50	60	70	80	
1	$C_{12}H_{25}$	2,4-D						1.09541	1.08787	
2	$C_{12}H_{25}$	MCPA				1.09733	1.08919	1.08227	1.07441	
3	$C_{12}H_{25}$	MCPP	1.06764	1.06063	1.05362	1.04652	1.03944	1.03222	1.02489	
4	$C_{12}H_{25}$	Dicamba			1.14047	1.13314	1.12584	1.11866	1.11126	
6	CAP ^a	MCPA	1.09165	1.08453	1.07745	1.07024	1.06293	1.05515	1.04707	
7	CAP ^a	MCPP	1.08930	1.08197	1.07459	1.06711	1.05937	1.05087	1.04081	
8	CAP ^a	Dicamba	1.15646	1.14947	1.14242	1.13527	1.12787	1.12043	1.11302	

Table S5. Density values	s (g·cm ⁻³) for ILs 1-4, 6-8
--------------------------	--

Table S6. Summary of straight lines coefficients a and b obtained by linear regression and correlation coefficients (\mathbb{R}^2) for density measurements

IL	IL Alkyl Anion		Equation of (y =	Correlation coefficient		
			a b		(R ²)	
2	$C_{12}H_{25}$	MCPA	-0.00076	1.1350	0.9991	
3	$C_{12}H_{25}$	МСРР	-0.00071	1.0820	0.9999	
4	C ₁₂ H ₂₅	Dicamba	-0.00073	1.1696	0.9999	
6	CAPa	МСРА	-0.00074	1.1068	0.9995	
7	CAPa	МСРР	-0.00080	1.1061	0.9969	
8	CAPa	Dicamba	-0.00072	1.1712	0.9998	

^a 3-cocoamidopropyl

п	A 111	Anion	Temperature [°C]						
	AIKYI	Anion	20	30	40	50	60	70	80
1	$C_{12}H_{25}$	2,4-D						1.49442	1.49109
2	$C_{12}H_{25}$	MCPA				1.50102	1.49729	1.49419	1.49122
3	$C_{12}H_{25}$	MCPP	1.49941	1.49622	1.49293	1.48958	1.48621	1.48285	1.47958
4	$C_{12}H_{25}$	Dicamba			1.50909	1.50585	1.50261	1.49941	1.49631
5	CAP ^a	2,4-D	1.50500	1.50053	1.49702	1.49333	1.4901	1.48682	1.48334
6	CAP ^a	МСРА	1.49895	1.49530	1.49174	1.48920	1.48637	1.48293	1.47999
7	CAPa	МСРР	1.50375	1.49913	1.49601	1.49221	1.48925	1.48569	1.48231
8	CAPa	Dicamba	1.51450	1.51132	1.50816	1.50502	1.50187	1.49927	1.49631
a 2 accomidanteria									

Table S7. Refractive index values for ILs 1-8

^a 3-cocoamidopropyl

Table S8. Summary of straight lines coefficients a and b obtained by linear regression and
correlation coefficients (R^2) for refractive index measurements

IL	Alkyl	Anion	Equation of a straight line $(y = a \cdot x + b)$		Correlation coefficient (R ²)
			a	b	
2	$C_{12}H_{25}$	MCPA	-0.00033	1.5171	0.9970
3	$C_{12}H_{25}$	MCPP	-0.00033	1.5061	0.9999
4	$C_{12}H_{25}$	Dicamba	-0.00032	1.5219	0.9999
5	CAP ^a	2,4-D	-0.00035	1.5115	0.9977
6	CAP ^a	MCPA	-0.00031	1.5048	0.9978
7	CAPa	МСРР	-0.00035	1.5101	0.9975
8	CAPa	Dicamba	-0.00030	1.5204	0.9991

Figure S22. Herbicidal activity of 2, 3, 6 and 7 against cornflower (Centaurea cyanus)

IL	Alkyl	Anion	Surface tension [mN m ⁻¹]	Contact angle [°]
1	$C_{12}H_{25}$	2,4-D	31.71 ± 0.10	58.95 ± 0.94
2	$C_{12}H_{25}$	MCPA	31.83 ± 0.16	60.28 ± 1.36
3	$C_{12}H_{25}$	МСРР	31.66 ± 0.09	57.51 ± 2.19
4	$C_{12}H_{25}$	Dicamba	32.66 ± 0.17	62.22 ± 0.91
5	CAPa	2,4-D	31.47 ± 0.04	51.74 ± 1.87
6	CAP ^a MCPA		31.62 ± 0.12	52.79 ± 1.87
7	CAP ^a MCPP		31.63 ± 0.08	50.40 ± 0.90
8	CAPa	Dicamba	30.41 ± 0.03	50.33 ± 1.39
	2,4-D ref. herbicide		71.70 ± 0.14	107.96 ± 0.66
	MCPA ref. herbicide		71.70 ± 0.12	107.86 ± 0.67
	Dicamba	ref. herbicide	65.32 ± 0.13	103.70 ± 0.93

Table S9. Collected values of surface tension (γ) and contact angle (CA) of spray solutionscontaining HILs (1-8) and reference herbicides

Figure S23. Shape of drop of the studied ILs (1-8) and reference herbicides