Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Fluorous molecules for dye-senzitized solar cells: synthesis and properties of di-branched, di-

anchoring organic sensitizers containing fluorene subunits

Ilir Pecnikaj

Department of Chemical, Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rr. Artan Hoxha, Tirana, Albania

Daniela Minudri, Luis Otero, Fernando Fungo*

Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal No 3, X5804BYA, Río Cuarto, Argentina

Marco Cavazzini, Simonetta Orlandi, Gianluca Pozzi*

Istituto di Scienze e Tecnologie Molecolari del Consiglio Nazionale delle Ricerche, ISTM-CNR, Via Golgi 19, 20133 Milano, Italy

NEW JOURNAL OF CHEMISTRY

Electronic Supplementary Information

Synthesis of aryl halides

All commercially available chemicals were used as received without further purification. 2-(4-Bromophenyl)-2-(hydroxymethyl)propane-1,3-diol¹ and n-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11heptadecafluoro)undecyliodide² were prepared as described in the literature. Solvents were purified by standard methods and dried if necessary. Reactions were monitored by thin layer chromatography (TLC) that was conducted on plates precoated with silica gel Si 60-F254 (Merck, Germany). Column chromatography was carried out on silica gel SI 60 (Merck, Germany), mesh size 0.063 – 0.200 mm (normal) or 0.040 – 0.063 mm (flash). ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400 spectrometer (400 and 100.6 MHz, respectively); ¹⁹F NMR spectra were recorded on a Bruker AC 300 spectrometer (282 MHz).

1-Iodo-4-(undecyloxy)benzene. To a solution of 4-iodophenol (2.20 g, 10 mmol) in DMSO (30 ml) pelleted KOH (2.20 g, 40 mmol) was added. The mixture was stirred 10 minutes at RT, then *n*-undecylbromide (2.24 mL, 10 mmol) was added dropwise by a syringe. The mixture was stirred overnight at RT. After addition of H₂O (150 mL). the resulting suspension was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layers were washed with H₂O (3 x 30 mL) and dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel, hexane/CH₂Cl₂ 8/1) affording the title compound as a white solid. Yield: 3.40 g (91%).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.54 (d, *J* = 8.9 Hz, 2H) 6.67 (d, *J* = 8.9 Hz, 2H), 3.91 (t, *J* = 6.6 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.49 – 1.39 (m, 2H), 1.37 – 1.21 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl3) δ [ppm] = 159.2, 138.3, 117.1, 82.5, 68.3, 32.1, 29.8, 29.8, 29.7, 29.5, 29.5, 29.28, 26.1, 22.8, 14.3.

1-iodo-4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyloxy)benzene. А flame-dried Schlenk tube was charged with 4-iodophenol (0.44 g, 2.0 mmol), anhydrous K₂CO₃ (1.12 g, 3.4 mmol) and dry DMF (8 mL), evacuated, and backfilled with nitrogen. Neat n-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro)undecyliodide (1.17 g, 2.0 mmol) was added under nitrogen. The Schlenk tube was sealed and the reaction mixture was stirred overnight at 60 °C. The resulting suspension was allowed to reach room temperature and partitioned between H_2O (40 mL) and Et₂O (40 ml). The organic layer was recovered, washed with H_2O (3 x 20 mL) and dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel, hexane/Et₂O 9/1) affording the title compound as an off-white solid.

Yield: 1.20 g (88%). ¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.56 (d, *J* = 8.9 Hz, 2H) 6.67 (d, *J* = 8.9 Hz, 2H), 4.00 (t, *J* = 5.9 Hz, 2H), 2.44 – 2.19 (m, 2H), 2.17 – 2.01 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ [ppm] = 158.4, 138.3, 116.8, 83.1, 66.4, 27.9 (t, *J*_{CF} = 22.5 Hz, <u>CH₂CF₂</u>), 20.5 (t, *J*_{CF} = 3.9 Hz, <u>CH₂CH₂CF₂). ¹⁹F NMR (282 MHz, CDCl₃): δ [ppm] = -81.7 (t, *J* = 10.1 Hz, 3F), -114.91 – -115.70 (m, 2F), -122.5 – -123.0 (m, 6F), -123.6 (br s, 2F), -124.3 (br s, 2F), -127.01 (br s, 2F).</u>

1-(1,3-Bis(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yloxy)-2-((1,1,1,3,3,3-hexafluoro-2-

(trifluoromethyl)propan-2-yloxy)methyl)propan-2-yl)-4-bromobenzene. 2-(4-Bromophenyl)-2-(hydroxymethyl)propane-1,3-diol (1.57 g, 6.0 mmol) and PPh₃ (6.02 g, 23.0 mmol) were dissolved under nitrogen in dry THF (20 mL). To the stirred solution cooled at 0 °C, a 40% solution of diisopropyl azodicarboxilate in toluene (10.8 mL, 23.0 mmol) was added dropwise by a syringe. After 10 minutes the reactor was brought to RT and perfluoro-*tert*-butanol (3.3 mL, 23 mmol) was added dropwise by a syringe. The reaction mixture was warmed at 45 °C for 48h. The solvent was the removed under reduced pressure and the residue was partitioned between AcOEt (10 mL) and perfluorodimethylcyclohexane (PFDMC, 20 mL). The organic layer was extracted twice with PFDMC (10 mL). The combined perfluorocarbon layers were washed with AcOEt (5mL) and evaporated to dryness affording the title compound as a white solid. Yield: 2.53 g (46%). ¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.52 (d, *J* = 8.7 Hz, 2H), 7.12 (d, *J* = 8.7 Hz, 2H), 4.36 (s, 6H). ¹³C NMR (100.6 MHz, CDCl₃): δ [ppm] = 134.8, 131.9, 127.6, 122.4, 120.0 (q, *J*_{CF} = 293 Hz), 79.4 (m), 67.9, 48.1. ¹⁹F NMR (282 MHz, CDCl₃): δ [ppm] = -71.1

- 1. J. S. Lindsay, D. F. Bocian, R. Loewe, I. Sanchez, W. G. Kuhr, K. Padmaja and L.Wei, WO 2007/053192
- 2. J.-M. Vincent, A. Rabion, V. K. Yachandra and R. H. Fish, *Can. J. Chem.* 2001, **79**, 888.

1H NMR spectra of fluorene derivatives

13C NMR spectra of fluorene derivatives

Figure S1: UV-Vis diffuse reflectance spectra of the **FBA** dyes adsorbed on TiO2 porous films (black line) compared to spectra in DCE solution (red line).

Figure S2: Cyclic voltamperometry profiles for the **FBA** dyes solutions onto Pt electrodes. Electrolyte: TBAPF6 0.1M, scan rate: 75 mV/s.

Figure S3: FT-IR spectra of FBA3 in KBr pellets (up) and adsorbed onto TiO₂ nanoparticles.

Figure S4: IPCE spectra of the DSSCs fabricated with the FBA1-4 dyes.