Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information

Multifunctional porous $NiCo_2O_4$ nanorods: sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations

Mohit Saraf^a, Kaushik Natarajan^a and Shaikh M. Mobin^{*a,b,c}

^aDiscipline of Metallurgy Engineering and Materials Science, ^bDiscipline of Chemistry and ^cCentre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India

*E-mail: <u>xray@iiti.ac.in</u> Tel: +91 731 2438 762 **Table S1.** Determination of glucose in human blood serum.

Sensor	Added (µM)	Found (µM)	RSD (%)	Recovery (%)
	30	28.76	1.04	95.68
NNCOGCE				
	30	29.81	1.06	99.39

Fig. S1. A comparison of CV profiles of bare GCE and *NNCOGCE* in 1 M KOH.

Calculations of Supercapacitor Parameters

The specific capacitance for *NNCOGCE* were calculated from the charge-discharge curves according to the equation mentioned below:

Specific capacitance = I dt /m ΔV

Since 10 mg of composite was dispersed in 10 mL ethanol, and 5 μ L of as-formed suspension was dropcast on the GCE, which gives an effective mass loading (m) of 5 μ g.

I is the applied current, dt is the discharge time, and ΔV is the potential window.

For the specific capacitance at current density (I/m) of 2 A g⁻¹, discharge time (dt) is 294 s and potential window (ΔV) is 0.6 V.

So according to the equation:

Specific capacitance = $2 * (294/0.6) = 980 \text{ F g}^{-1}$

Similarly, at a current density (I/m) of 3 A g⁻¹, discharge time (dt) is 173 s.

Specific capacitance = $3 * (173/0.6) = 865 \text{ F g}^{-1}$

Similarly specific capacitance were calculated at all other current densitites.