Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Experimental and DFT studies of disubstituted 2-(2-

hydroxyphenyl)benzothiazole-based fluorophores synthesized by

Suzuki coupling

Yahui Niu,^a Qin Wang,^a Haoran Wu,^b Yuxiu Wang^a and Yanrong Zhang^{*a}

^a College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi

712100, P. R. China

^b Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi

712100, P. R. China

Corresponding author:

College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi

712100, P. R. China

Tel: +86-29-87092226; E-mail: zhangyr@nwsuaf.edu.cn (Y. R. Zhang).

TDDFT-PCM			
λ(nm)	f	assign	%
369.01	0.6470	HOMO >LUMO	97.6
317.12	0.4621	HOMO-1 > LUMO	92.9
299 10 294 55	0.0468	HOMO-2> LUMO	75.3
		HOMO-3> LUMO	14.6
	0.1183	HOMO > LUMO	2.8
		HOMO-3> LUMO	78.9
		HOMO-2> LUMO	13.6
		HOMO > LUMO+1	3.2

Table S1. TDDFT vertical excitation wavelengths and oscillator strengths (*f*) of HBT-H-H.

LUMO LUMO+1 LUMO+2

Figure S1. Molecular orbital amplitude plots of HBT-H-H calculated by using B3LYP/6-31+G(d) basis set with G09 program.

Figure S2. Comparison of the excitation spectra monitored at the fluorescence maximum wavelength and the absorption spectra of HBT-H-H in various solution.

Figure S3 The energy-optimized geometric str_uctures of enol-tautomer of HBT- -H in excited state and the relevant H-bond parameters.

Figure S4. The theoretically calculated fluorescence spectrum of HBT-H-H in toluene. $(\lambda_{em} = 532.23 \text{ nm})$

Figure S5. The theoretically calculated fluorescence spectrum of HBT-CN-H in toluene. ($\lambda_{em} = 536.72$ nm)

Figure S6. The theoretically calculated fluorescence spectrum of HBT-CN-OMe in toluene. ($\lambda_{em} = 570.62$ nm)

Figure S7. The theoretically calculated fluorescence spectrum of HBT-CN-CN in toluene. ($\lambda_{em} = 516.23$ nm)

Figure S8. Comparison of the fluorescence spectra of HBT-H-H in toluene and in crystalline.

Figure S9. Fluorescence quantum yield of HBT-H-H crystal (Φ_f =49.63%).

Figure S10. Fluorescence lifetime profiles of HBT-H-H crystal.

Empirical formula	$C_{25} H_{17} N O S$	
Å Formula weight	379.46	
Crystal system	Triclinic	
space group	P-1	
Crystal size/mm	0.40 x 0.30 x 0.20	
a/Å, α/deg.	9.9130(8)/	
	78.3830(10)	
b/ Å, β/deg.	10.2709(9)/71.218(2)	
c/ Å, γ/deg.	10.8021(9)/	
	67.6380(10)	
$V/ \text{\AA}^3$	959.04(14)	
GOF	1.047	

Table S2. Crystallographic data for HBT-H-H (CCDC 1546814)

CDCl₃.

Figure S12. ¹H NMR spectrum of 5-bromo-2-hydroxy-4-iodobenzaldehyde (Compound 2) in CDCl₃.

(Compound **2**) in CDCl₃.

Figure S14. ¹H NMR spectrum of 2-(benzo[*d*]thiazol-2-yl)-4-bromo-5-iodophenol (Compound **3**) in CDCl₃

Figure S15. ¹³C NMR spectrum of 2-(benzo[*d*]thiazol-2-yl)-4-bromo-5-iodophenol (Compound 3) in CDCl₃

Figure S16. ¹H NMR spectrum of Compound 4 in CDCl₃.

Figure S17. ¹³C NMR spectrum of Compound 4 in CDCl₃

Figure S18. ¹H NMR spectrum of HBT-H-H in CDCl₃.

Figure S19. ¹³C NMR spectrum of HBT-H-H in CDCl₃

Figure S20. ¹H NMR spectrum of HBT-CN-H in CDCl₃

Figure S22. ¹H NMR spectrum of HBT-CN-MeO in CDCl₃

Figure S23. ¹³C NMR spectrum of HBT- CN-MeO in CDCl₃

Figure S24. ¹H NMR spectrum of HBT-CN-CN in CDCl₃

Figure S25. ¹³C NMR spectrum of HBT- CN-CN in CDCl₃

YH-6: HRMS (ESI) m/z calcd for C25H18NOS+ (M+H)+ 380.11036, found 380.11078.

Figure S26. HRMS spectrum of HBT-H-H.

Figure S27. HRMS spectrum of HBT-CN-CN.

YH-11: HRMS (ESI) m/z calcd for C20H12BrN2OS+ (M+H)+ 406.98482, found

Figure S28. HRMS spectrum of Compound 4.

YH-5: HRMS (ESI) m/z calcd for C₂₆H₁₇N₂OS⁺ (M+H)⁺ 405.10561, found 405.10568.

Figure S29. HRMS spectrum of HBT-CN-H.

YH-8: HRMS (ESI) m/z calcd for C₂₇H₁₉N₂O₂S⁺ (M+H)⁺ 435.11617, found 435.11618.

Figure S30. HRMS spectrum of HBT-CN-OMe.