Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Files

The Band Structure and Photocatalytic Mechanism for CeO₂ Modified C₃N₄

Photocatalyst

Zhongxing Han^a, Yanlong Yu^b, Wenjun Zheng^b and Yaan Cao^{a, *}

^a MOE Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education,

TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin

300457, China

^b Department of Materials Chemistry, College of Chemistry, Nankai University,

Tianjin 300457, China

* Corresponding author.

Tel.: +86 22 66229431.

E-mail address: caoya@nankai.edu.cn (Y. Cao).

Figure S1. XRD patterns of C_3N_4 , CeO_2 and $C_3N_4/CeO_2X\%$ samples.

Figure S2. FE-SEM images of (a) $g-C_3N_4$, (b) CeO₂, and (c) C_3N_4 /CeO₂40%.

Figure S2 shows the FE-SEM images of pure $g-C_3N_4$, CeO₂ and C₃N₄/CeO₂40% composite. It is revealed that $g-C_3N_4$ displays a palte-like structure (Figure S2a). For CeO₂ sample, nanoparticles with average diameter of ~50 nm are observed (Figure S2b). For C₃N₄/CeO₂40%, amounts of CeO₂ nanoparticles with an average diameter of about 200 nm are deposited and distributed on the surface of C₃N₄ sheets, which results in forming a heterostructured CeO₂/g-C₃N₄ material.

Figure S3. UV–vis diffuse reflectance spectra for C_3N_4 , CeO_2 and $C_3N_4/CeO_2X\%$ samples

Figure S4. Photocatalytic activity for reduction of CO_2 into CH_4 (a) and CO (b) of C_3N_4 , CeO_2 , $C_3N_4/CeO_2X\%$ samples.

Figure S5. XPS spectra of (a) C 1s for $C_3N_4/CeO_240\%$ and C_3N_4 samples, (b) N 1s for $C_3N_4/CeO_240\%$ and C_3N_4 samples, (c) O 1s for $C_3N_4/CeO_240\%$, C_3N_4 and CeO_2 samples, (d) Ce 3d for $C_3N_4/CeO_240\%$ and CeO_2 samples

Figure S6. Photocatalytic activity of recycling experiments for $g-C_3N_4/CeO_240\%$ with 5 times.