New route to carbonate-functionalized imidazolium and pyrrolidinium-based ionic liquids

Hassan Srour,^a* Walid Darwich,^a Felix Lindl,^a Pascale Husson,^c Helene Rouault,^b and Catherine Santini^a

Synthesis and characterizations

Formation of 3-methyl-1-(propyloxycarbonyl)imidazolium chloride intermediate (1)

The reaction was carried out under inert gas atmosphere. A solution of Propyl chloroformate (1.317 g, 1.208 mL, 10.749 mmol) in anhydrous CH_2Cl_2 (2 mL) was added drop wise at 0°C to a solution of 1-Methylimidazole (0.802 g, 0.779 mL, 9.772 mmol) in dried CH_2Cl_2 (2 mL). The mixture was warmed to room temperature and stirred for 2 h. Thereafter, the solvent was smoothly removed under vacuum. A colourless precipitate was performed (2.000 g, 9.772 mmol, 100%). The obtained solid was used for synthesis of **4** and **5** without further purification.

Scheme 1: The white precipitate of compound **1** intermediate.

Scheme 2: Proton NMR of the compound 1 intermediate.

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

Analysis Info

Comment	ethod omment	2016_03_17_Infusion_50-1000_pos.m
Comment	omment	

Acquisition Date 8/22/2017 8:08:10 AM Instrument / Ser# micrOTOF-Q 228888.10 231

Acquisition Par	rameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Active	Set Capillary	3500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Collision Cell RF	400.0 Vpp	Set Divert Valve	Waste
NAME OF TAXABLE PARTY.					

Scheme 3: ESI⁺ of intermediate **1**, m/z=169 corresponding to the compound **1**.

Formationof1-[2-(propyloxycarbonyloxy)ethyl]-3-methylimidazolium bis(tri-
fluoromethane)sulfonimide (4) : $[C_1C_2O(CO)OPrIm][NTf_2]$

Via syringe 1-[2-(Hydroxy)ethyl]-3-methylimidazolium bis(trifluoromethane)sulfonimide (3.619 g, 8.885 mmol) was added drop wise to freshly generated precipitate **1** (2.000 g, 9.772 mmol) at 0 °C. The resulting clear solution was warmed to 50 °C and stirred overnight. After cooling to room temperature, CH_2Cl_2 (9 mL) was added. The organic phase was washed with deionised water until no chloride was detected in the aqueous phase (AgNO₃ standard test). Evaporation of CH_2Cl_2 yielded a colourless viscous fluid (3.534 g, 7.164 mmol, 81 %).

¹H-NMR (CD₂Cl₂): δ (ppm): 8.76 (s, 1H, C2*H*); 7.33 (d, 2H, C4*H*, C5*H*); 4.48 (m, 4H, NC*H*₂C*H*₂O); 4.09 (t, 2H, OC*H*₂CH₂CH₃); 3.95 (s, 3H, NC*H*₃); 1.67 (st, 2H, OCH₂C*H*₂CH₃); 0.94 (t, 3H, OCH₂CH₂CH₂CH₃).

¹³C{¹H}-NMR (CD₂Cl₂): δ (ppm): 155.0 (O(CO)O); 136.9 (C2H); 124.3 (C5H); 123.2 (C4H); 120.2 (CF₃); 70.4 (OCH₂CH₂CH₃); 65.6 (NCH₂CH₂O); 53.8 (NCH₂CH₂O); 36.2 (NCH₃); 21.9 (OCH₂CH₂CH₃); 9.6 (OCH₂CH₂CH₃).

Electrospray, MS (+ve): *m/z* 213 (100% - [C₁C₂O(CO)OPrIm]⁺), MS (-ve): *m/z* 280 (100% - [NTf₂]⁻).

FormationofN-methyl-N-[2-(propyloxycarbonyl)ethyl]pyrrolidinium bis(tri-fluoromethane)sulfonimide(5) : $[C_1C_2O(CO)OPrPy][NTf_2]$

Via syringe *N*-Methyl-*N*-[2-(Hydroxy)ethyl]pyrrolidinium bis(trifluoromethane)sulfonimide (3.620 g, 8.822 mmol) was added drop wise to freshly generated precipitate **1** (2.000 g, 9.772 mmol) at 0 °C. The resulting clear solution was warmed to 50 °C and stirred overnight. After cooling to room temperature, CH_2CI_2 (9 mL) was added. The organic phase was washed with deionised water until no chloride was detected in the aqueous phase (AgNO₃ standard test). Evaporation of CH₂Cl₂ yielded slightly yellowish oil (3.478 g, 7.006 mmol, 79 %).

¹H-NMR (CD₂Cl₂): δ (ppm): 4.55 (m, 2H, NCH₂CH₂O); 4.13 (t, 2H, OCH₂CH₂CH₃); 3.72 (t, 2H, NCH₂CH₂O); 3.59 (m, 4H, C2H₂, C5H₂); 3.12 (s, 3H, NCH₃); 2.28 (m, 4H, C3H₂, C4H₂); 1.69 (st, 2H, OCH₂CH₂CH₃); 0.95 (t, 3H, OCH₂CH₂CH₃).

¹³C{¹H}-NMR (CD₂Cl₂): δ (ppm): 154.7 (O(CO)O); 120.3 (CF₃); 70.5 (OCH₂CH₂CH₃); 65.6 (C2H₂, C5H₂); 62.7 (NCH₂CH₂O); 61.7 (NCH₂CH₂O); 48.6 (NCH₃); 21.9 (C3H₂, C4H₂); 21.3 (OCH₂CH₂CH₃); 9.7 (OCH₂CH₂CH₃).

Electrospray, MS (+ve): *m*/z 216 (100% - [C₁C₂O(CO)OPrPy]⁺), MS (-ve): *m*/z 280 (100% - [NTf₂]⁻).

Fig A3 ESI⁺ spectra of ionic liquid **4**. Chloride cluster $[C1(C_2O(CO)OC_3)Im]_2[CI]$ peak at m/z = 461 is absent.

Fig A4 ESI⁻ spectra of ionic liquid 4.

Fig A6 Infrared spectra of IL4.

C₁₂H₁₇N₃O₇S₂F₆

C ₁₂ H ₁₇ N ₃ O ₇ S ₂ F ₆ (5)	m _{lost} theoret.	m _{lost} found
Step 1: $C_4H_7O_2$	17.6 %	19.1 %
Step 2: $C_2NO_5S_2F_6$	60.0 %	58.1 %
∑m _{lost}	77.6 %	77.2 %

Fig A7 Thermogram of IL4 demonstrates onset point, corrected onset point and two steps of decomposition.

Fig B3. ESI⁺ spectra of **IL5**. Chloride cluster $[C_1(C_2O(CO)OC_3)Py]_2[CI]$ peak at m/z = 467 is absent.

Fig B5 DSC spectra of IL5.

Fig B6 Infrared spectra of IL5.

$C_{13}H_{22}N_2O_7S_2F_6$ (5)	m _{lost} theoret.	m _{lost} found
Step 1: C ₄ H ₇ O ₂	17.5 %	18.3 %
Step 2: $C_3H_3NO_5S_2F_6$	62.7 %	62.6 %
∑m _{lost}	80.2 %	80.9 %

Fig B7 Thermogram of IL5 demonstrates onset point, corrected onset point and two steps of decomposition.

Appendix C

Fig C1 Walden plots of **IL4** (\wp), **IL5** (\square) and $[C_8C_1ImNTf_2]^1$ (∞) as a function of temperature from 298K to 333K. Black line, reference line (KCl, 0.01 M).

References

1. H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, K. Hayamizu and M. Watanabe, *J. Phys. Chem. B*, 2006, **110**, 19593-19600.