Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

New Journal of Chemistry

Supporting Information

for

Synthesis of novel profluorescent nitroxides as dual luminescent-paramagnetic active probes

Anca G. Coman,^a Codruta C. Paraschivescu,^a Anca Paun,^a Andreea Diac,^b Niculina D. Hadade,^b Laurent Jouffret,^c Arnaud Gautier,^c,* Mihaela Matache^a,* and Petre Ionita^{a,d,*}

^{a.} University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90-92 Panduri Street, RO-050663 Bucharest, Romania; e-mail: mihaela.matache@g.unibuc.ro (M. Matache); pionita@icf.ro (P. Ionita)

^{b.} Faculty of Chemistry and Chemical Engineering, Supramolecular Organic and Organometallic Chemistry Centre, "Babes--Bolyai" University, 11 Arany Janos Str., RO-400028-Cluj-Napoca, Romania;

^c Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France; e-mail: arnaud.gautier@uca.fr ^d.Institute of Physical Chemistry "Ilie Murgulescu", 202 Splaiul Independentei, Bucharest, Romania

1. Electron paramagnetic resonance

Figure S1 Left: EPR spectra of compounds **1a-d** after treatment with phenylhydrazine in a 1:1 ratio at different reaction times. Right: Left: EPR spectra of compounds **1a-d** after treatment with phenylhydrazine in a 1:10 ratio at different reaction times. Experiments were conducted in 20% DMSO in HEPES 0,01M pH= 7.5, at a concentration of 5 x 10⁻⁵M

EPR spectra were recorded on a Jeol Jes FA 100 apparatus. Aqueous solutions of free radicals at 10⁻⁴ M concentration were charged into capillary glass tubes and the spectra were recorded at room temperature. The following settings were used: frequency 8.99 GHz, field 322 mT, sweep width 10 mT, sweep time 120 s, time constant 30 ms, gain 200, modulation frequency 100 kHz, modulation width 0.1 mT.

2. Fluorescence spectroscopy

a) Fluorescence spectra of compounds 5a-d. Fluorescence spectra were recorded with a Cary Eclipse fluorimeter. The spectra were recorded in 1 cm quartz luminescence cells 5 nm excitation and emission slits were used for all measurements. Absorption spectra for quantum yields determination were recorded with a UV-3100 spectrometer. Stock solutions of compounds were prepared in DMSO at 10^{-3} mol L⁻¹ and diluted to 5×10^{-7} mol L⁻¹ in HEPES buffer (10^{-2} mol L⁻¹ pH = 7.4). Quantum yields were determined using a solution of quinine sulphate in 0.5 mol L⁻¹ aqueous H₂SO₄ as standard for quantum yield determination.

b) Fluorescence spectra of 1a-d and fluorescence spectra of compounds 1a-d incubated with a reducing agent. Fluorescence spectra were recorded with a Thermo Scientific Varioskan Flash spectral scanning multimode reader. The spectra were recorded in suitable plates using 5 nm excitation and emission slits were used for all measurements. Stock solutions of compounds were prepared in DMSO at 10^{-3} mol L⁻¹, diluted to 5×10^{-5} mol L⁻¹ in 10^{-2} mol L⁻¹ pH = 7.4 HEPES buffer and incubated for different times, before reading the fluorescence, with a solution of sodium ascorbate 5×10^{-5} mol L⁻¹ in HEPES buffer (10^{-2} mol L⁻¹ pH = 7.4).

Figure S2 Left: EPR spectra of compounds 1b-d after treatment with sodium ascorbate. Right: Emission spectra of compounds 1b-d after treatment with sodium ascorbate. Experiments were conducted in 20% DMSO in HEPES 0,01M pH=7.5, at a concentration of 5 x 10⁻⁵M

Figure S3 Solution emission spectra of the nitroxides 1a-d (black lines) compared to their precursor carboxy derivatives 5a-d (coloured lines) recorded in 15% DMSO in HEPES 0.01 M pH= 7.51, at a concentration of 5×10^{-7} M, using λ_{ex} =296 nm for 1a, λ_{ex} =319 nm for 1b, λ_{ex} =372 nm for 1c, λ_{ex} =370 nm for 1d

c) Response of 1a to sodium ascorbate. Fluorescence spectra were recorded with a Thermo Scientific Varioskan Flash spectral scanning multimode reader. The spectra were recorded in suitable plates using 5 nm excitation and emission slits were used for all measurements. Stock solution of compound was prepared in DMSO at 10^{-3} mol L⁻¹ and aliquots of 50 µL were incubated for 30 and 45 minutes, respectively, before reading, with solutions of sodium ascorbate 10^{-3} mol L⁻¹ in HEPES buffer (10^{-2} mol L⁻¹ pH = 7.4) in ratios from 0 to 2 (8 points) to a final volume of 1 mL with 5 x 10^{-5} mol L⁻¹ final concentration of the organic compound.

d) Fluorescence spectra of compound 1d in various solvents and of compound 1d in various solvents incubated with a reducing agent. Fluorescence spectra were recorded with a Thermo Scientific Varioskan Flash spectral scanning multimode reader. The spectra were recorded in suitable plates using 5 nm excitation and emission slits were used for all measurements.. Absorption spectra for quantum yields determination were recorded with a Jasco V-630 spectrophotometer, using 10 mm quartz cell. Stock solutions of compound were prepared in CHCl₃ (2.68×10^{-3} mol L⁻¹), CH₃CN (2×10^{-4} mol L⁻¹), CH₃OH (2×10^{-3} mol L⁻¹), DMSO (10^{-4} mol L⁻¹), diluted to 5×10^{-5} mol L⁻¹ using the corresponding solvent and incubated for 30 minutes, before reading the absorbance, with a solution of phenylhydrazine 10^{-1} mol L⁻¹ in the corresponding solvent, in a ratio 1d:phenyldrazine=1:10. Quantum yields were determined using a solution of quinine sulphate in 0.5 mol L⁻¹ aqueous H₂SO₄ as standard for quantum yield determination.

e) The solid state emission spectra were recorded on a JASCO FP 8300 spectrofluorometer.

Figure S4 Solid state emission spectra of the nitroxides 1a-d (black lines) and their precursor carboxy derivatives 5a-d (coloured lines) recorded using $\lambda_{ex}=295$ nm for 1a, $\lambda_{ex}=318$ nm for 1b, $\lambda_{ex}=370$ nm for 1c, $\lambda_{ex}=360$ nm for 1d.

3. Cyclic voltammetry

Cyclic voltammetry was performed in dichloromethane solution using tetrabutylammonium hexafluorophosphate 0.10M as supporting electrolyte. All solutions were deaerated by bubbling with a dry argon streamprior to each experiment. Experiments were carried out in a one-compartment cell equipped with platinum electrodes and saturated calomel reference electrode (SCE) with a Biologic SP-150 potentiostat with positive feedback compensation.

Figure S5. Cyclic voltammograms of compounds 1 in 0.1 M Bu_4NPF_6/CH_2Cl_2 , Pt electrodes, scan rate = 100 mV s⁻¹.

4. ¹H NMR spectra (selection - reduced with PhNHNH₂) of compound 1d in CDCl₃ and DMSO- d_6

Figure S6 Fragments of the NMR spectra of compound 1d (reduced with phenylhydrazine) in $CDCl_3$ and $DMSO-d_6$

5. Single crystal X-Ray Diffraction - the elementary cell of compound 1d containing two molecules head to tail oriented

Table S1. Sample and crystal data for 1d

Identification code	CA104	
Chemical formula	$C_{34}H_{31}N_4O_3$	
Formula weight	543.63 g/mol	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal size	0.092 x 0.125 x 0.354 mm	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 7.990(3) Å	$\alpha = 94.821(10)^{\circ}$
	b = 12.475(4) Å	$\beta=94.404(9)^\circ$
	c = 14.539(5) Å	$\gamma = 108.372(9)^{\circ}$
Volume	1362.3(8) Å ³	
Z	2	
Density (calculated)	1.325 g/cm^3	
Absorption coefficient	0.086 mm^{-1}	
F(000)	574	

Table S2. Data collection and structure refinement for 1d

Theta range for data collection	2.70 to 25.87°	
Index ranges	-9<=h<=9, -15<=	k<=15, -17<=l<=17
Reflections collected	43403	
Independent reflections	5258 [R(int) = 0.0668]	
Coverage of independent reflections	99.6%	
Absorption correction	Numerical Mu From Formula	
Max. and min. transmission	0.9920 and 0.9700	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	5258 / 0 / 374	
Goodness-of-fit on F ²	1.057	
Final R indices	3530 data; I>2σ(I)	R1 = 0.0452, wR2 = 0.1194
	all data	R1 = 0.0810, wR2 = 0.1385
Weightingscheme	w=1/[$\sigma^2(F_o^2)$ +(0.0711P) ² +0.1369P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	0.383 and -0.253 eÅ ⁻³	
R.M.S. deviation from mean	0.056 eÅ ⁻³	

Figure S 7 ¹H NMR spectrum of compound 4a

Figure S 8 ¹³C NMR spectrum of compound 4a

Figure S 9 ¹H NMR spectrum of compound 4b

Figure S 10 ¹³C NMR spectrum of compound 4b

Figure S 11 ¹H NMR spectrum of compound 4c

Figure S 12 ¹³C NMR spectrum of compound 4c

Figure S 13 ¹H NMR spectrum of compound 4d

Figure S 14 ¹³C NMR spectrum of compound 4d

Figure S 15 ¹H NMR spectrum of compound 5a

Figure S 16 ¹³C NMR spectrum of compound 5a

Figure S 17 ¹H NMR spectrum of compound 5b

IT (ppm)

Figure S 18 ¹³C NMR spectrum of compound 5b

Figure S 19 ¹H NMR spectrum of compound 5c

Figure S 20 ¹³C NMR spectrum of compound 5c

Figure S 21 ¹H NMR spectrum of compound 5d

Figure S 22 ¹³C NMR spectrum of compound 5d

Figure S 23 ¹H NMR spectrum of compound 1a

Figure S 24 ¹H NMR spectrum of compound 1b

Figure S 25 ¹H NMR spectrum of compound 1c

Figure S 26 ¹H NMR spectrum of compound 1d

