Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

SUPPORTING INFORMATION FOR:

Redox Speciation of Uranyl in Citrate medium: Kinetics and reduction mechanism with In Situ Spectroelectrochemical investigation

Ashutosh Srivastava^a, Ashis K. Satpati^b, Ritu Singh^a, Pranaw Kumar^c, Sumit Kumar^a and Bhupendra S. Tomar*.^a

^aRadioanalytical chemistry Division; ^bAnalytical Chemistry Division; ^cFuel chemistry Division Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai-400085

Email: <u>bstomar@barc.gov.in</u>

(b)

(c)

Figure S1. Speciation plots: (a) At $[UO_2^{2+}]=10^{-5}$ M in presence of $[Citrate]=5x10^{-3}$ M; (b) At $[UO_2^{2+}]=10^{-3}$ M in presence of $[Citrate]=5x10^{-2}$ M; (c) At $[UO_2^{2+}]=10^{-3}$ M in presence of $[Citrate]=1x10^{-3}$ M.

(b)

(d)

(f)

Figure S2. ESI-MS data conditions: (a) $[UO_2^{2+}] = 10^{-5}$ M in presence of $[Citrate] = 5x10^{-3}$ M at pH 4, (b) Same as (a) at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (d) Same as (c) at pH 6.4, (e) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 4, (b) Same as (c) at pH 6.4, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[Citrate] = 5x10^{-2}$ M at pH 6.5, (c) $[UO_2^{2+}] = 10^{-3}$ M in presence of $[UO_2^{2$

(g)

 1×10^{-3} M at pH 3.25, (f) & (g) Theoretically calculated m/z value of isotopic peak for $[(UO_2)_2Cit_2]^{2-}$ and $[UO_2Cit]^-$ respectively, (h) Experimentally observed isotopic peak pattern.

Figure S3. (a) & (b) are E vs. logv plot for peak I [U(VI)-U(V)] and (c)-(f) are i vs. \sqrt{v} plot, Condition: (a) & (c) at [UO₂²⁺]=10⁻⁵ M [Citrate]= 5x10⁻³ M, I= 0.1 M NaClO₄ at pH 4 while (d) same as (c) at pH 6.5; (b) & (e) at [UO₂²⁺]= 10⁻³ M [Citrate]= 5x10⁻² M, I= 0.1 M NaClO₄ at pH 4 while (f) same as (e) at pH 6.5.

(h)

Figure S4. E(V) vs. $\log [1-(t/\tau)^{1/2}]$ plots at pH 4 are in (a) & (b). Variation of chronopotentiometric constant $(i\tau^{1/2})$ with pH (c) at fixed $i = 10x10^{-8}$ A and (d) at fixed $i = 10x10^{-7}$ A. Variation of Peak Current function (i/\sqrt{v}) with pH at 50 mV/sec scan rate are in (e) & (f). Variation of E(t=0) with log i at pH 5 are in (g). The plot (h) is derivative chronopotentiometric peaks at several pH values and $i = 5x10^{-7}$ A. The variation of cyclic voltammograms with scan rates are in (i). Conditions: (a), (c), (e), (g) & (i) are at $[UO_2^{2+}] = 10^{-5}$ M, $[Citrate] = 5x10^{-3}$ M and I= 0.1 M NaClO₄ while (b), (d), (f) & (h) are at $[UO_2^{2+}] = 10^{-3}$ M. $[Citrate] = 5x10^{-2}$ M and I= 0.1 M NaClO₄.

Figure S5. Plot of i(A) vs. t(sec) with varying pH is in (a) and (b) is the plot of i(A) vs. t^{-1/2}. Condition: (a) and (b) $[UO_2^{2^+}] = 1 \times 10^{-5}$ M, [Citrate]= 5×10^{-3} M and I= 0.1 M NaClO₄.

Figure S6. The Variation of E_p (a) with $[UO_2^{2+}]$ concentration at fixed [Citrate]= 1x10⁻² M, I= 0.1 M NaClO₄ and pH 4; (b) The variation of $F_0[UO_2^{2+}Conc.]$ with $[UO_2^{2+}Conc.]$ at pH 4.

Taken: $A = 4x10^{-3} \text{ cm}^2$,							
pН	Monomer [UO ₂ Cit] ⁻			Dimer $[(UO_2)_2Cit_2]^{2-}$			
	Conc.(C_0^*)	Slope	D ₀	Conc.(C_0^*)	Slope	D ₀	
	mol cm ⁻³		(cm ² /sec)	mol cm ⁻³		(cm ² /sec)	
4	7.26x10 ⁻⁹	2.138x10 ⁻⁸	1.21x10 ⁻⁵	3.87x10 ⁻⁷	8.70x10 ⁻⁷	7.07x10 ⁻⁶	
6.5	8.76x10 ⁻⁹	8.166x10 ⁻⁸	9.39x10 ⁻⁶	3.887x10 ⁻⁷	2.29x10 ⁻⁶	3.74x10 ⁻⁶	

Table S1. The observed slope and calculated value of D_0 from i vs. $\surd\nu$ plot

Applied	Monomer [UO ₂ Cit] ⁻			Applied	Dimer $[(UO_2)_2Cit_2]^{2-}$				
Current (A)	Slope	αn	Intercept	$k^{0}_{f,h}$ (cm/sec)	Current (A)	Slope	αn	Intercept	k ⁰ _{f,h} (cm/sec)
Lower Current (6x10 ⁻⁹)	0.14	0.42	-0.14	6.16x10 ⁻⁶	Lower Current (4x10 ⁻⁷)	0.11	0.52	-0.11	1.20x10 ⁻⁵
Higher Current (9x10 ⁻⁹)	0.13	0.45	-0.15	8.69x10 ⁻⁶	Higher Current (7x10 ⁻⁷)	0.13	0.45	-0.14	1.13x10 ⁻⁵

Table S2. The value of αn and $k_{f,h}^0$ for $[UO_2Cit]^-$ and $[(UO_2)_2Cit_2]^{2-}$ at lower and higher current densities.

Speciation Calculation: At $[UO_2^{2+}] = 4x10^{-3}$ M in presence of [Citrate] = $4x10^{-3}$ M at pH 4.

 $[UO_2Cit]^-: [(UO_2)_2Cit_2]^{2-} = 11.5:82.3$

```
*** System pH = 4. ****************
System pH: 4.0
Ionic Strength: 1.000E-01 mol/L
Temperature: 25.0 Deg C
Charge Imbalance: 74.1 Percent
 Species in Solution Molar Concentration
      H+1
                             1.281E - 04
      U02+2
                            2.300E-04
      Citrate
                            8.282E-07
                           1.644E-04
1.684E-05
      H2[Citrate]
H3[Citrate]
       (UO2) 2 (CITRATE) 2) -2 1.647E-03
UO2H (CITRATE) 6.361E-06
      UO2H (CITRATE)
      UO2 (CITRATE) -
                            4.581E-04
                            1.289E-10
      OH-
                            1.388E-06
      UO2OH+
                           5.243E-06
       (UO2) 2 (OH) 2+2
       (UO2)3(OH)5+ 2.081E-08
H[Citrate] 5.986E-05
                            5.986E-05
      H[Citrate]
 Component Distribution Among Species
    For Component: Citrate
          4.1% is in species: H2[Citrate]
         82.3% is in species: (UO2)2(CITRATE)2)-2
         11.5% is in species: UO2(CITRATE) -
         1.5% is in species: H[Citrate]
    For Component: UO2+2
         5.7% is in species: UO2+2
         82.3% is in species: (UO2)2(CITRATE)2)-2
         11.5% is in species: UO2(CITRATE)-
 Component Distribution Among Phases
                               ----- Percent in Each Phase -----
                                 Dissolved Sorbed Precipitated
                                100.0% 0.0% 0.0%
    For Component: Citrate
                                              0.0%
   For Component: UO2+2
                                 100.0%
                                                         0.0%
                                               0.0% 0.0%
   For Component: H+1
                                100.0%
```

Parameters used for speciation modeling

The distribution of Uranyl in the Citrate solution, as shown in speciation plots [Figure S1(a-c)], is mainly dependent on thermodynamics data viz. stability constant of the species. Following are the reactions and parameters used in the speciation modelling:

1. UO_2^{2+} + [Citrate] ³⁻	$= [UO_2Citrate]^-$	$\log K = 6.70$
2. $2UO_2^{2+} + 2[Citrate]^{3-}$	$= [(UO_2)(Citrate)_2]^2$	log K= 19.02
3. $UO_2^{2+} + H_2O$	$= H^{+} + [UO_2(OH)]^{+}$	$\log K = -5.89$
4. $3UO_2^{2+} + 5H_2O$	$= 5H^{+} + [(UO_2)_3(OH)_5]^{+}$	$\log K = -15.58$
5. $2UO_2^{2+} + 2H_2O$	$= 2H^{+} + [(UO_2)_2(OH)_2]^{2+}$	$\log K = -5.57$
6. $UO_2^{2+} + 4H_2O$	$= 4H^{+} + [UO_2(OH)_4]^{2-}$	$\log K = -33.00$
7. $3UO_2^{2+} + 7H_2O$	$= 7H^{+} + [(UO_2)_3(OH)_7]^{-}$	$\log K = -31.00$
8. $4UO_2^{2+} + 7H_2O$	$= 7H^{+} + [(UO_2)_4(OH)_7]^{+}$	$\log K = -21.90$
9. $UO_2^{2+} + 2H_2O$	$= 2H^{+} + [UO_2(OH)_2(aq)]$	$\log K = -12.0$
10. $UO_2^{2+} + 3H_2O$	$= 3H^{+} + [UO_2(OH)_3]^{-}$	$\log K = -20.00$
11. H ⁺ + Citrate	= H[Citrate]	log K= 6.39
12. 2H ⁺ + Citrate	= H2[Citrate]	log K=11.16
13. $3H^+$ + Citrate	= H3[Citrate]	log K= 14.28