Supporting Information for:

Synthesis of Pyridine-Alkoxide Ligands for Formation of Polynuclear Complexes

Dimitar Y. Shopov,[‡] Liam S. Sharninghausen,[‡] Shashi Bhushan Sinha,[‡] Julia E. Borowski, Brandon Q. Mercado, Gary W. Brudvig* and Robert H. Crabtree*

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.

1.	Optimization of ligand synthesis	<u>Page No.</u> 2 - 3
2.	Structures of complexes and ligands	4-5
3.	Cyclic voltammetry data	6-8
4.	UV-visible spectra	9-12
5.	IR data	13-21
6.	NMR spectra and HRMS data	22 - 36
7.	Crystallographic information	37 – 76
8.	References	76

1. Optimization of ligand synthesis

We investigated the possibility of enhancing the oligomer yield by varying the reaction conditions. Since Grignard reactions are normally carried out at low temperature in part to suppress deprotonation, we studied the effects of running the reaction at elevated temperatures, which could favor aldol coupling, which requires a mixture of protonated and deprotonated acetylpyridine. Doing so increased the relative abundance of starting material and **aD** in the product mixture, decreased the yield of **pyalkH**, but did not increase oligomer yield; in fact, temperatures above 40 °C resulted in lower yields of all pyridinols. While we suspected that methylation would be favored excessively by classical Grignard conditions (0 °C), this did not appear to be the case here, with the highest dimer yields (20-25% combined) occurring under these conditions.

After numerous preparations under the same or differing conditions, we noted that product distribution was poorly reproducible. For example, reactions carried out under the same conditions gave somewhat variable product yields, and merely changing the reaction scale or order of addition resulted in considerable deviations. We suspect that this arises due to several factors: the extremely rapid nature of the reaction (meaning that much of it occurs in the initial contact), its exothermicity, creating uncontrollable localized hot spots at that first contact, and the poor solubility of resulting magnesium adducts, which create a heterogeneous slurry as the reaction progresses. As a result, much of the reaction outcome is likely determined by factors that are difficult to control, such as addition droplet size and velocity, slurry consistency, etc.

Since optimization of the **pyalkH** yield can be accomplished simply by promoting the methylation reaction, which, as the subject of extensive prior reports,¹ is not discussed here. Formation of the oligomers, on the other hand, is much more complicated as it involves three separate reactions (deprotonation, aldol, and methylation) that must occur stepwise implying the presence of the required intermediates. The natural response would be to attempt to perform these steps in a sequential manner: deprotonation and aldol dimerization, followed by methylation.² After several attempts with various aldol methods,³ however, we failed to prepare **aD** in any appreciable yield; in addition, various side products were observed in each case. Attempts to isolate **aD** revealed that it is in fact an unstable compound, readily undergoing retro-aldol to re-form 2-acetylpyridine, presumably due to the unfavorable thermodynamics of diketone coupling. This occurs rapidly in crude mixtures when heated to near 100 °C, and slowly (approx. 20% over 6 hours) at room temperature in mostly pure samples (crude mixtures appear to be stable at room temperature, however). Indeed, this compound is only known in the literature as a copper-bound adduct.⁴ Therefore, the original conditions, where methylation is concurrent, may be successful due to the irreversible trapping of the oligomerized forms.

Even if the sequential strategy had been successful, however, it is unclear that it would have actually been more efficient, due to the additional workup steps required.

Given the low cost of the starting materials and the difficulties presented, we reasoned that the most effective strategy was to simply perform the one-step Grignard reaction on a large scale despite the limited dimer yield.

2. Structures of ligands and complexes 1-12.

Mn OH2 Иn OH₂ 0 Ń 7

Structures of ligands

3. Cyclic voltammetry

Table S1 Redox potentials for selected complexes.

Complex			Redox potential (V vs NHE)														
1 2 ^b 3 4 6 12 ^c				Non	e observ	ved											
			0.530ª 1.056, 1.302														
			1.107 0.714, 1.270 0.870, 1.164 ^a														
									Experiments	run	in	aqueous	KNO ₃	buffer	(0.1M)	with	BDD

working electrode and Ag/AgCl reference electrode unless stated otherwise. ^aQuasi-reversible ^bDMF with 0.1M TBAPF₆ and GC working electrode used; potential reported vs. Fc. ^cMeCN with 0.1M TBAPF₆ and GC working electrode used; potential reported vs. Fc. In all cases, a Pt counter electrode was used.

Figure S1. Cyclic voltammogram of complex **2.** Experiment run in DMF with 0.1M TBAPF₆ and GC working electrode used; potential reported vs. ferrocene.

Figure S2. Cyclic voltammogram of complex **2.** Experiment run in aqueous KNO₃ buffer (0.1M) with BDD working electrode and Ag/AgCl reference electrode.

Figure S3. Cyclic voltammogram of complex **4.** Experiment run in aqueous KNO_3 buffer (0.1M) with BDD working electrode and Ag/AgCl reference electrode.

Figure S4. Cyclic voltammogram of complex **6.** Experiment run in aqueous KNO₃ buffer (0.1M) with BDD working electrode and Ag/AgCl reference electrode

Figure S5. Cyclic voltammogram of complex **12.** Experiment run in ACN with 0.1M TBAPF₆ and GC working electrode used; potential reported vs. ferrocene.

4. Uv-visible spectra

Complex	$\lambda_{max}(nm)$	$\epsilon(M^{-1}cm^{-1})$			
1	535	292			
2 ^a	592	72			
3 ^b	605	271			
4 ^b	606	88			
6	411, 486	1952, 1918			
8	475	2099			
12	602	18			
DCM used as solvent, unless otherwise noted. ^a Methanol used as solvent. ^b Water used as					
solvent.					

<u>**Table S2.</u>** Uv-visible spectra for selected complexes.</u>

Figure S6. Uv-visible spectrum of complex 1 in DCM.

Figure S7. Uv-visible spectrum of complex 2 in methanol.

Figure S8. Uv-visible spectrum of complex 3 in water.

Figure S9. Uv-visible spectrum of complex 4 in water.

Figure S10. Uv-visible spectrum of complex 6 in DCM.

Figure S11. Uv-visible spectrum of complex 8 in DCM.

Figure S12. Uv-visible spectrum of complex 12 in DCM.

5. FTIR spectra

Figure S13. FTIR spectrum of mD.

Figure S14. FTIR spectrum of rD.

Figure S15. FTIR spectrum of complex 1.

Figure S16. FTIR spectrum of complex **2**.

Figure S17. FTIR spectrum of complex **3**.

Figure S18. FTIR spectrum of complex **4**.

Figure S19. FTIR spectrum of complex **6**.

Figure S20. FTIR spectrum of complex 8.

Figure S21. FTIR spectrum of complex 12.

6. NMR and HRMS data

Compound mD

¹H NMR

¹³C NMR

HRMS (FT-ICR): Calculated $[C_{15}H_{18}N_2O_2]Na^+$: 281.1266. Found: 281.1270.

Compound rD

¹³C NMR

 $\label{eq:HRMS} \text{(FT-ICR): Calculated } [C_{15}H_{18}N_2O_2]H^+ : 259.1447. \ \text{Found: } 259.1445.$

Compound rrT

¹H NMR

	402.	1783		
		4 <u>03.</u> 1820		2
2000				
388.4536	397.1445	<u>404.</u> 1853	416.1055	431.18

```
HRMS (FT-ICR): Calculated: [C_{22}H_{25}N_3O_3]Na^+: 402.1794. Found: 402.1783.
```

Compound mrT

¹³C NMR

Compound mmT

¹H NMR

HRMS (FT-ICR): Calculated: $[C_{22}H_{25}N_3O_3]Na^+: 402.1794$. Found: 402.1779.

¹H NMR

¹H NMR (600 MHz, Methylene Chloride-*d*₂) δ 8.96 (d, *J* = 5.8, Ar-H, 2H), 8.71 (d, *J* = 5.5 Hz, Ar-H, 2H), 7.59 (m, Ar-H, 2H), 7.53 (m, Ar-H, 2H), 7.25 (m, Ar-H, 2H), 7.04 – 6.99 (m, Ar-H, 4H), 6.60 (d, *J* = 7.9 Hz, Ar-H, 2H), 2.32 (d, *J* = 15.0 Hz, HC-H, 2H), 2.10 (d, *J* = 15.0 Hz, HC-H, 2H), 1.48 (s, CH₃, 7H), 1.36 (s, CH₃, 6H).

HRMS (FT-ICR): Calculated: $[C_{30}H_{34}CuN_4O_4]Na^+$: 600.1774. Found: 600.1156.

HRMS (FT-ICR): Calculated $[C_{30}H_{32}Cu_2N_4O_4]H^+$: 639.1094. Found: 639.1085.

¹H NMR

HRMS (FT-ICR): Calc $C_{30}H_{32}N_4Ni_2O_4$: 629.1209. Found: 629.1199


```
COSY
```


HRMS (FT-ICR): Calculated $[C_{14}H_{14}N_2O_2]H^+$: 243.1134 Found: 243.1129.

7. Crystallographic Details

Identification code	007-16022-mDL-final		
Empirical formula	C15 H20 N2 O3		
Formula weight	276.33		
Temperature	93(2) K		
Wavelength	1.54187 Å		
Crystal system	Monoclinic		
Space group	P2 ₁		
Unit cell dimensions	a = 8.32500(10) Å	a = 90°.	
	b = 10.87670(10) Å	b =110.364(8)°.	
	c = 8.5879(6) Å	g = 90°.	
Volume	729.02(6) Å ³		
Z	2		
Density (calculated)	1.259 Mg/m ³		
Absorption coefficient	0.719 mm ⁻¹		
F(000)	296		
Crystal size	0.200 x 0.100 x 0.100 mm ³		
Crystal color and habit	Colorless Block		
Diffractometer	Rigaku Saturn 944+ CCD		
Theta range for data collection	5.495 to 66.582°.		
Index ranges	-9<=h<=9, -12<=k<=12, -10<=l<=10		
Reflections collected	24343		
Independent reflections	2573 [R(int) = 0.0439]		
Observed reflections (I > 2sigma(I))	2485		
Completeness to theta = 66.582°	100.0 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.000 and 0.853		
Solution method	SHELXT-2014/5 (Sheldrick, 24	014)	
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)		
Data / restraints / parameters	2573 / 5 / 199		
Goodness-of-fit on F ²	1.057		
Final R indices [I>2sigma(I)]	R1 = 0.0263, wR2 = 0.0616		
R indices (all data)	R1 = 0.0276, wR2 = 0.0623		
Absolute structure parameter	0.02(8)		

Table S3. Crystal data and structure refinement for mD

Extinction coefficient

n/a

Largest diff.	peak and hole	0.122 and -0.132 e.Å-

Table S4.	Hydrogen	bonds for mD	[Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)	0.86(2)	1.82(3)	2.622(2)	154(3)
O(2)-H(2)O(3)	0.89(2)	1.78(2)	2.668(2)	174(3)
O(3)-H(3B)O(1)#1	0.85(2)	1.95(2)	2.783(2)	166(3)
O(3)-H(3A)N(1)#2	0.89(2)	1.91(2)	2.763(2)	160(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+1 #2 x,y,z+1

<u>Refinement Details for mD</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of **mD**. The diffraction images were processed and scaled using Rigaku CrystalClear software. The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The only exceptions are H1, H2, H3a and H3b, which were found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of **mD** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1529458** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S22. Full numbering scheme of mD. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	mini-15089-rdl		
Empirical formula	C15 H20 N2 O3		
Formula weight	276.33		
Temperature	93(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 9.7831(7) Å	a = 90°.	
	b = 9.0271(6) Å	b=103.691(7)°.	
	c = 16.4023(12) Å	g = 90°.	
Volume	1407.38(18) Å ³		
Z	4		
Density (calculated)	1.304 Mg/m ³		
Absorption coefficient	0.091 mm ⁻¹		
F(000)	592		
Crystal size	0.400 x 0.200 x 0.200 mm ³		
Crystal color and habit	Colorless Block		
Diffractometer	Rigaku Mercury275R CCD		
Theta range for data collection	3.112 to 30.505°.		
Index ranges	-13<=h<=11, -12<=k<=12, -23<=l<=23		
Reflections collected	12383		
Independent reflections	4243 [R(int) = 0.0365]		
Observed reflections (I > 2sigma(I))	3275		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	1.000 and 0.892		
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)	
Refinement method	SHELXL-2014/7 (Sheldrick, 2	014)	
Data / restraints / parameters	4243 / 3 / 199		
Goodness-of-fit on F ²	1.060		
Final R indices [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.1089		
R indices (all data)	R1 = 0.0774, wR2 = 0.1170		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.426 and -0.241 e.Å ⁻³		

Table S5. Crystal data and structure refinement for rD.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(3)#1	0.870(15)	1.797(15)	2.6662(14)	176(2)
O(2)-H(2)O(1)	0.87(2)	1.87(2)	2.6458(14)	146.3(19)
O(3)-H(3A)N(1)#2	0.869(15)	2.017(16)	2.8652(15)	165(2)
O(3)-H(3B)N(2)	0.874(15)	1.980(16)	2.8204(15)	161(2)

<u>Table S6.</u> Hydrogen bonds for rD [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+1/2 #2 x,y-1,z

<u>Refinement Details for rD</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCX Mini diffractometer (sealed tube) coupled to a Rigaku Mercury 275R CCD detector with Mo K α ($\lambda = 0.71075$ Å) for the structure of T3. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. All carbonbound hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. H1, H2, H3A and H3B were found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distances. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of **mD** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information, CCDC number 1529459 contains the supplementary crystallographic data for this paper. These data can be The Cambridge Crystallographic obtained free of charge from Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S23. Full numbering scheme of rD. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	007-16221		
Empirical formula	C22 H25 N3 O3		
Formula weight	379.45		
Temperature	93(2) K		
Wavelength	1.54187 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 13.1202(9) Å	a = 90°.	
	b = 13.8904(2) Å	b=104.628(7)°.	
	c = 10.95920(10) Å	g = 90°.	
Volume	1932.52(15) Å ³		
Ζ	4		
Density (calculated)	1.304 Mg/m ³		
Absorption coefficient	0.709 mm ⁻¹		
F(000)	808		
Crystal size	$0.100 \ x \ 0.050 \ x \ 0.050 \ mm^3$		
Crystal color and habit	Colorless Plate		
Diffractometer	Rigaku Saturn 944+ CCD		
Theta range for data collection	3.482 to 66.586°.		
Index ranges	-15<=h<=15, -16<=k<=16, -13<=l<=12		
Reflections collected	38183		
Independent reflections	3363 [R(int) = 0.0451]		
Observed reflections (I > 2sigma(I))	2826		
Completeness to theta = 66.586°	98.3 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	1.000 and 0.865		
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)	
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)		
Data / restraints / parameters	3363 / 3 / 267		
Goodness-of-fit on F ²	1.094		
Final R indices [I>2sigma(I)]	R1 = 0.0422, wR2 = 0.0971		
R indices (all data)	R1 = 0.0514, wR2 = 0.1026		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.251 and -0.245 e.Å ⁻³		

Table S7. Crystal data and structure refinement for rrT.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)	0.867(16)	1.852(19)	2.6281(18)	148(2)
O(2)-H(2)O(3)	0.888(17)	1.802(19)	2.6241(17)	153(2)

Table S8. Hydrogen bonds for rrT [Å and °].

<u>Refinement Details for rrT</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of **rrT**. The diffraction images were processed and scaled using Rigaku CrystalClear software. The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The only exceptions are H1, H2 and H3, which were found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distances. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of **rrT** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1529460** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S24. Full numbering scheme of rrT. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	007-17008-T2		
Empirical formula	C22 H27 N3 O4		
Formula weight	397.46		
Temperature	93(2) K		
Wavelength	1.54187 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 10.84070(10) Å	a = 90°.	
	b = 15.3854(2) Å	b = 90°.	
	c = 24.0090(16) Å	g = 90°.	
Volume	4004.4(3) Å ³		
Z	8		
Density (calculated)	1.319 Mg/m ³		
Absorption coefficient	0.745 mm ⁻¹		
F(000)	1696		
Crystal size	0.200 x 0.200 x 0.200 mm ³		
Crystal color and habit	Colorless Prism		
Diffractometer	Rigaku Saturn 944+ CCD		
Theta range for data collection	3.682 to 66.603°.		
Index ranges	-12<=h<=12, -18<=k<=18, -28<=l<=28		
Reflections collected	124474		
Independent reflections	3547 [R(int) = 0.1646]		
Observed reflections (I > 2sigma(I))	2799		
Completeness to theta = 66.603°	100.0 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.000 and 0.605		
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)	
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)		
Data / restraints / parameters	3547 / 6 / 285		
Goodness-of-fit on F ²	1.117		
Final R indices [I>2sigma(I)]	R1 = 0.0673, $wR2 = 0.1974$		
R indices (all data)	R1 = 0.0771, wR2 = 0.2094		
Extinction coefficient	0.0019(4)		
Largest diff. peak and hole	0.316 and -0.281 e.Å ⁻³		

Table S9. Crystal data and structure refinement for mrT.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(4)-H(4B)N(3)#1	0.854(18)	2.00(2)	2.823(3)	161(4)
O(4)-H(4A)N(1)#2	0.847(19)	2.06(2)	2.857(3)	157(5)
O(2)-H(2)O(3)	0.877(19)	1.87(3)	2.654(3)	147(4)
O(1)-H(1)O(2)	0.866(19)	2.02(3)	2.746(3)	141(4)
O(3)-H(3)O(4)	0.884(19)	1.78(2)	2.663(3)	177(4)

Table S10. Hydrogen bonds for mrT [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,y,-z+1/2 #2 x-1,y,z

<u>Refinement Details for mrT</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α ($\lambda = 1.54178$ Å) for the structure of **mrT**. The diffraction images were processed and scaled using Rigaku CrystalClear software. The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The only exceptions are H1-H5, which were found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distances and a distance restraint of 1.388(2) Å between water H atoms H4A and H4B. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of **mrT** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1529461** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/dat_request/cif</u>.

Figure S25. Full numbering scheme of mrT. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	T3ligand		
Empirical formula	C22 H25 N3 O3		
Formula weight	379.45		
Temperature	93(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	Pn		
Unit cell dimensions	a = 8.7376(14) Å	a = 90°.	
	b = 12.3604(19) Å	b=108.002(8)°.	
	c = 9.2476(14) Å	g = 90°.	
Volume	949.8(3) Å ³		
Ζ	2		
Density (calculated)	1.327 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹		
F(000)	404		
Crystal size	0.20 x 0.20 x 0.10 mm ³		
Crystal color and habit	Colorless Block		
Diffractometer	Rigaku Mercury275R CCD		
Theta range for data collection	3.253 to 27.485°.		
Index ranges	-11<=h<=11, -15<=k<=16, -11<=l<=11		
Reflections collected	13819		
Independent reflections	4299 [R(int) = 0.1086]		
Observed reflections (I > 2sigma(I))	3287		
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	1.000 and 0.164		
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)	
Refinement method	SHELXL-2014/7 (Sheldrick, 2	014)	
Data / restraints / parameters	4299 / 4 / 264		
Goodness-of-fit on F ²	1.074		
Final R indices [I>2sigma(I)]	R1 = 0.1057, wR2 = 0.2481		
R indices (all data)	R1 = 0.1292, wR2 = 0.2641		
Absolute structure parameter	-1.0(10)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.812 and -0.437 e.Å ⁻³		

<u>**Table S11.**</u> Crystal data and structure refinement for **mmT**.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)N(1)#1	0.85(3)	2.01(4)	2.812(8)	158(8)
O(2)-H(2)O(1)	0.86(3)	1.87(8)	2.597(7)	141(11)
O(3)-H(3)O(2)	0.82	2.03	2.701(7)	138.3

Table S12. Hydrogen bonds for **mmT** [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1,z+1/2

Refinement Details for mmT

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCX Mini diffractometer (sealed tube) coupled to a Rigaku Mercury 275R CCD detector with Mo K α ($\lambda = 0.71075$ Å) for the structure of **mmT**. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. All carbon-bound hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. H1, H2 and H3 were found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distances. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of **mmT** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1529462** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Figure S26. Full numbering scheme of T3. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	mini-14056	mini-14056	
Empirical formula	$C_{31}H_{36}Co_2N_4O_9$	$C_{31}H_{36}Co_2N_4O_9$	
Formula weight	726.50	726.50	
Temperature	223(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	a = 8.267(4) Å	$\alpha = 90^{\circ}$	
	b = 14.974(8) Å	$\beta = 91.544(12)^{\circ}$	
	c = 12.165(6) Å	$\gamma = 90^{\circ}$	
Volume	1505.4(14) Å ³		
Z	2		
Density (calculated)	1.603 Mg/m ³		
Absorption coefficient	1.165 mm ⁻¹		
F(000)	752		
Crystal size	0.400 x 0.400 x 0.400 n	nm ³	
Θ range for data collection	3.017 to 26.370°.	3.017 to 26.370°.	
Index ranges	$-10 \le h \le 10, -18 \le k \le 10$	$-10 \le h \le 10, -18 \le k \le 18, -15 \le l \le 15$	
Reflections collected	17486	17486	
Independent reflections	6131 [R(int) = 0.0517]		
Completeness to $\theta = 25.242^{\circ}$	99.8 %		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.653 and 0.502		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	6131 / 1 / 426	6131 / 1 / 426	
Goodness-of-fit on F ²	1.052	1.052	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0450, wR2 = 0.0	R1 = 0.0450, wR2 = 0.0778	
R indices (all data)	R1 = 0.0554, wR2 = 0.0	R1 = 0.0554, wR2 = 0.0810	
Absolute structure parameter	0.453(18)	0.453(18)	
Largest diff. peak and hole	0.584 and -0.488 e.Å ⁻³	0.584 and -0.488 e.Å ⁻³	

 Table S13.
 Crystal data and structure refinement for 1.

Refinement details for 1

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCXmini diffractometer coupled to an Mercury2 CCD detector with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of **1**. All structures were solved by direct methods using SHELXS and were refined against F^2 on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. *Acta Cryst.* **2008**, *A64*, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of compound **1** can be found in the Supporting Information. Full details of the X-ray structure determination are in the CIF included as Supporting Information. CCDC number **1529487** (**1**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S27. The full numbering scheme of **1**. All atoms shown are depicted with 50% thermal contours. The hydrogen atoms are shown as spheres.

Identification code	shelx_162B1	
Empirical formula	C30 H34 Cu N4 O4	
Formula weight	578.15	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 8.3252(3) Å	a = 90°.
	b = 14.6827(5) Å	b= 105.716(7)°.
	c = 11.7096(8) Å	$g = 90^{\circ}$.
Volume	1377.83(12) Å ³	
Ζ	2	
Density (calculated)	1.394 Mg/m ³	
Absorption coefficient	0.835 mm ⁻¹	
F(000)	606	
Crystal size	.2 x .1 x .1 mm ³	
Crystal color and habit	blue Plate	
Diffractometer	Rigaku Mercury275R CCD	
Theta range for data collection	3.027 to 27.479°.	
Index ranges	-10<=h<=10, -19<=k<=19, -15<=l<=15	
Reflections collected	21525	
Independent reflections	3146 [R(int) = 0.0324]	
Observed reflections (I > 2sigma(I))	2927	
Completeness to theta = 25.242°	99.6 %	
Absorption correction	Semi-empirical from equivaler	nts
Solution method	SHELXT-2014/5 (Sheldrick, 2	2014)
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)	
Data / restraints / parameters	3146 / 1 / 184	
Goodness-of-fit on F ²	1.124	
Final R indices [I>2sigma(I)]	R1 = 0.0332, $wR2 = 0.1279$	
R indices (all data)	R1 = 0.0365, WR2 = 0.1310	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.846 and -0.363 e.Å ⁻³	

Table S14. Crystal data and structure refinement for 2.

Table S15. Hydrogen bo	nds for 2 [Å and	°].
------------------------	-------------------------	-----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(1)	0.851(16)	1.795(17)	2.5983(17)	157(2)

<u>Refinement Details for 2</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCX Mini diffractometer (sealed tube) coupled to a Rigaku Mercury 275R CCD detector with Mo K α ($\lambda = 0.71075$ Å) for the structure of 2. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. All carbon-bound hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. H2 was found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distance. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of 2 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529488 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Crystallographic www.ccdc.cam.ac.uk/data request/cif. Cambridge Data Center via

Figure S28. Full numbering scheme of 2. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	mini_167B1	
Empirical formula	C30 H40 Cu2 N4 O8	
Formula weight	711.74	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	a = 10.1205(6) Å	a = 90°.
	b = 12.7849(8) Å	b=96.938(7)°.
	c = 11.5863(8) Å	g = 90°.
Volume	1488.17(17) Å ³	
Z	2	
Density (calculated)	1.588 Mg/m ³	
Absorption coefficient	1.488 mm ⁻¹	
F(000)	740	
Crystal size	0.200 x 0.100 x 0.100 mm ³	
Crystal color and habit	Blue Block	
Diffractometer	Rigaku Mercury275R CCD	
Theta range for data collection	3.187 to 27.484°.	
Index ranges	-13<=h<=13, -16<=k<=16, -15<=l<=15	
Reflections collected	25325	
Independent reflections	3407 [R(int) = 0.0383]	
Observed reflections (I > 2sigma(I))	3182	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalent	ts
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)	
Data / restraints / parameters	3407 / 0 / 207	
Goodness-of-fit on F ²	1.164	
Final R indices [I>2sigma(I)]	R1 = 0.0352, $wR2 = 0.0914$	
R indices (all data)	R1 = 0.0389, wR2 = 0.0932	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.534 and -0.753 e.Å ⁻³	

<u>**Table S16**</u>. Crystal data and structure refinement for **3**.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3B)O(4)#1	0.85	1.88	2.729(3)	173.3
O(4)-H(4A)O(1)#2	0.87	1.91	2.763(3)	167.7
O(4)-H(4B)O(1)#3	0.87	2.01	2.877(3)	176.8
O(3)-H(3A)O(2)	0.85	1.93	2.774(3)	170.0

Table S17. Hydrogen bonds for 3 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,-z+3/2 #2 x+1/2,-y+1/2,z+1/2

#3 -x+3/2,y-1/2,-z+3/2

Refinement Details for 3

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCX Mini diffractometer (sealed tube) coupled to a Rigaku Mercury 275R CCD detector with Mo K α ($\lambda = 0.71075$ Å) for the structure of **3**. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F^2 on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. All carbon-bound hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. H3A, H3B, H4A and H4B were found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distances. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of 3 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529489 contains the supplementary crystallographic data for this paper. These data can be obtained Center free of charge from The Cambridge Crystallographic Data via www.ccdc.cam.ac.uk/data request/cif

Figure S29. Full numbering scheme of 3. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	007-16215-curacdl_sq_sq	
Empirical formula	C30 H32 Cu2 N4 O4	
Formula weight	639.67	
Temperature	293(2) K	
Wavelength	1.54187 Å	
Crystal system	Orthorhombic	
Space group	C222 ₁	
Unit cell dimensions	a = 9.73340(10) Å	α= 90°.
	b = 20.3755(3) Å	β= 90°.
	c = 15.4589(10) Å	$\gamma = 90^{\circ}$.
Volume	3065.9(2) Å ³	
Z	4	
Density (calculated)	1.386 Mg/m ³	
Absorption coefficient	2.031 mm ⁻¹	
F(000)	1320	
Crystal size	0.20 x 0.20 x 0.20 mm ³	
Crystal color and habit	Colorless Prism	
Diffractometer	Rigaku Saturn 944+ CCD	
Theta range for data collection	4.340 to 66.581°.	
Index ranges	-11<=h<=11, -24<=k<=24, -18<=l<=18	
Reflections collected	47265	
Independent reflections	2731 [R(int) = 0.0427]	
Observed reflections (I > 2sigma(I))	2658	
Completeness to theta = 66.581°	100.0 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	1.000 and 0.857	
Solution method	SHELXT 2014/5 (Sheldrick, 2014)	
Refinement method	SHELXL-2016/6 (Sheldrick, 2016)	
Data / restraints / parameters	2731 / 0 / 184	
Goodness-of-fit on F ²	1.079	
Final R indices [I>2sigma(I)]	R1 = 0.0313, wR2 = 0.0806	
R indices (all data)	R1 = 0.0321, wR2 = 0.0813	
Absolute structure parameter	0.386(8)	

 Table S18.
 Crystal data and structure refinement for 4.

Extinction coefficient	n/a
Largest diff. peak and hole	0.260 and -0.656 e.Å ⁻³
Refinement Details for 4	

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of 4. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F^2 on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122). All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The data were refined as a two-component twin. See cif file for details. The program SQUEEZE was used to compensate for the contribution of disordered solvents contained in voids within the crystal lattice from the diffraction intensities. This procedure was applied to the data file and the submitted model is based on the solvent removed data. Based on the total electron density found in the voids (160e/ 531 A3), it is likely that ~8 water molecules are present in the unit cell. The oxygens were visible in the difference map; however, the refinement of the water molecules was a problem, likely due to disorder. See " platon squeeze details" in the .cif for more information. The full numbering scheme of 4 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529490 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S30. Full numbering scheme of 4. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	205b1	
Empirical formula	C77 H62 B F24 Mn3 N6 O8	
Formula weight	1830.95	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 32.9393(14) Å	a = 90°.
	b = 32.2445(14) Å	b=94.087(7)°.
	c = 15.9331(11) Å	$g = 90^{\circ}$.
Volume	16879.7(16) Å ³	
Z	8	
Density (calculated)	1.441 Mg/m ³	
Absorption coefficient	0.550 mm ⁻¹	
F(000)	7408	
Crystal size	$0.050 \ x \ 0.050 \ x \ 0.040 \ mm^3$	
Crystal color and habit	Red Block	
Diffractometer	Rigaku Mercury275R CCD	
Theta range for data collection	2.989 to 25.025°.	
Index ranges	-39<=h<=39, -38<=k<=38, -18<=l<=18	
Reflections collected	92206	
Independent reflections	14876 [R(int) = 0.1276]	
Observed reflections (I > 2sigma(I))	11347	
Completeness to theta = 25.025°	99.8 %	
Absorption correction	Semi-empirical from equivalen	ts
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)	
Data / restraints / parameters	14876 / 148 / 1195	
Goodness-of-fit on F ²	1.168	
Final R indices [I>2sigma(I)]	R1 = 0.0951, wR2 = 0.1716	
R indices (all data)	R1 = 0.1284, $wR2 = 0.1843$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.946 and -0.449 e.Å ⁻³	

Table S19. Crystal data and structure refinement for 5.

Hydrogen bonds for 205b1-3 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(8)-H(8C)O(4)	0.85(2)	2.05(4)	2.820(6)	150(6)

Symmetry transformations used to generate equivalent atoms:

<u>Refinement Details for 5</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku R-AXIS RAPID diffractometer coupled to an R-AXIS RAPID imaging plate detector with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of 5. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F^2 on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of 5 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1531809** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif. A number of CF3 groups were modeled as disordered. Adding additional parameters for other CF3 groups did not greatly improve the overall refinement metrics. The program SQUEEZE was used to compensate for the contribution of disordered solvents contained in the voids in the crystal lattice from the diffraction intensities (Acta Cryst. 2009, D65, 148-155). This procedure was applied to the data file and the submitted model is based on the solvent removed data. Based on the total electron density found in the voids (449e/2192.5 A3), it is likely that ~11 dichloromethane molecules are present in the unit cell. See platon squeeze details in the .cif for more information.

Figure S31. Full numbering scheme of 5. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	spider-15048	
Empirical formula	C61 H64 Mn4 N8 O11	
Formula weight	1304.96	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 16.9929(12) Å	a = 90°.
	b = 13.5907(10) Å	b=90.478(2)°.
	c = 33.118(2) Å	$g = 90^{\circ}$.
Volume	7648.1(9) Å ³	
Ζ	4	
Density (calculated)	1.133 Mg/m ³	
Absorption coefficient	0.697 mm ⁻¹	
F(000)	2696	
Crystal size	0.200 x 0.100 x 0.100 mm ³	
Crystal color and habit	Brown Plate	
Diffractometer	Rigaku R-AXIS RAPID imaging plate	
Theta range for data collection	2.274 to 25.026°.	
Index ranges	-20<=h<=20, -16<=k<=16, -39<=l<=39	
Reflections collected	82104	
Independent reflections	6749 [R(int) = 0.1480]	
Observed reflections (I > 2sigma(I))	4537	
Completeness to theta = 25.026°	99.9 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	1.000 and 0.836	
Solution method	SHELXT-2014/5 (Sheldrick, 2014)	
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)	
Data / restraints / parameters	6749 / 0 / 384	
Goodness-of-fit on F ²	0.930	
Final R indices [I>2sigma(I)]	R1 = 0.0461, $wR2 = 0.1123$	
R indices (all data)	R1 = 0.0756, wR2 = 0.1207	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.521 and -0.348 e.Å ⁻³	

<u>**Table S20**</u>. Crystal data and structure refinement for 6.

Refinement Details for 6

Low-temperature diffraction data (@-scans) were collected on a Rigaku R-AXIS RAPID diffractometer coupled to an R-AXIS RAPID imaging plate detector with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of 6. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. Two low-angle reflections were improperly recorded ordered due to instrument artifacts and omitted from the refinement. The program SQUEEZE was used to compensate for the contribution of disordered solvents contained in the voids in the crystal lattice from the diffraction intensities (Acta Cryst. 2009, D65, 148-155). This procedure was applied to the data file and the submitted model is based on the solvent removed data. Some of this disordered solvent could be modeled as water molecules, but refinement was problematic. Based on the total electron density found in the voids (1086.8 e/2490.6 A3), it is likely that ~109 water molecules are present in the unit cell. See platon squeeze details in the .cif for more information. The full numbering scheme of $\mathbf{6}$ can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529491 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S32. Full numbering scheme of 6. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	spider-15058	spider-15058	
Empirical formula	C30 H44 Mn2 N6 O16	C30 H44 Mn2 N6 O16	
Formula weight	854.59	854.59	
Temperature	93(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	I2/a		
Unit cell dimensions	a = 19.6402(13) Å	a = 90°.	
	b = 8.4523(5) Å	b=93.816(10)°.	
	c = 21.958(3) Å	$g = 90^{\circ}$.	
Volume	3637.0(6) Å ³		
Z	4		
Density (calculated)	1.561 Mg/m ³		
Absorption coefficient	0.775 mm ⁻¹		
F(000)	1776		
Crystal size	0.200 x 0.100 x 0.100 n	nm ³	
Crystal color and habit	Red Block		
Diffractometer	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID imaging plate	
Theta range for data collection	3.177 to 25.017°.	3.177 to 25.017°.	
Index ranges	-23<=h<=23, -10<=k<=	-23<=h<=23, -10<=k<=10, -26<=l<=26	
Reflections collected	24035	24035	
Independent reflections	3198 [R(int) = 0.1417]	3198 [R(int) = 0.1417]	
Observed reflections (I > 2sigma(I))	2441		
Completeness to theta = 25.017°	99.8 %		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	1.000 and 0.794		
Solution method	SHELXT-2014/5 (Sheld	drick, 2014)	
Refinement method	SHELXL-2014/7 (Sheld	drick, 2014)	
Data / restraints / parameters	3198 / 0 / 264		
Goodness-of-fit on F ²	1.069		
Final R indices [I>2sigma(I)]	R1 = 0.0625, wR2 = 0.0	0844	
R indices (all data)	R1 = 0.0890, wR2 = 0.0	916	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.334 and -0.400 e.Å ⁻³	0.334 and -0.400 e.Å ⁻³	

Table S21.	Crystal	data	and	structure	refinemen	t for	7.
------------	---------	------	-----	-----------	-----------	-------	----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3A)O(4)	0.81(4)	1.89(4)	2.681(4)	166(4)
O(3)-H(3B)O(1)#1	0.86(4)	1.86(5)	2.711(4)	173(4)
O(4)-H(4A)O(5)	0.76(6)	2.01(6)	2.769(5)	171(6)
O(4)-H(4B)O(7)#2	0.92(7)	1.89(7)	2.803(5)	175(6)
O(4)-H(4B)O(8)#2	0.92(7)	2.54(6)	3.212(6)	130(5)
O(4)-H(4B)N(3)#2	0.92(7)	2.58(7)	3.442(6)	157(5)
O(5)-H(5A)O(6)#3	0.85	2.65	3.428(5)	152.0
O(5)-H(5A)O(7)#3	0.85	2.07	2.865(4)	155.6
O(5)-H(5B)O(6)	0.85	2.00	2.792(5)	155.1

Table S22. Hydrogen bonds for 7 [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y+1,-z+1 #2 x,y+1,z #3 -x+1,y+1/2,-z+3/2

Refinement Details for 7

Low-temperature diffraction data (ω -scans) were collected on a Rigaku R-AXIS RAPID diffractometer coupled to an R-AXIS RAPID imaging plate detector with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of 7. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95- 0.99 Å and U-iso-(H) = 1.2 times U~eq~(C) for CH and CH2 groups and U~iso~(H) = 1.5 times U~eq~(C) for CH3 groups. The protons on O3 were found in the difference map and refined as riding atoms. The protons on O4 were freely refined. The protons on O5 were geometrically placed and refined as a rigid group. The full numbering scheme of 7 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1529492** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccde.cam.ac.uk/data_request/cif.

Figure S33. Full numbering scheme of 7. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Table S23.	Crystal	data and	structure	refinement	for	8.
------------	---------	----------	-----------	------------	-----	----

Identification code	spider-15051	
Empirical formula	C66 H74 Cl4 F12 Mn4 N8 O12 P2	
Formula weight	1822.83	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 20.2718(14) Å	a = 90°.
	b = 14.4091(10) Å	b = 90°.
	c = 24.8638(17) Å	g = 90°.
Volume	7262.7(9) Å ³	
Z	4	
Density (calculated)	1.667 Mg/m ³	
Absorption coefficient	0.968 mm ⁻¹	
F(000)	3712	
Crystal size	$0.200 \ge 0.200 \ge 0.050 \text{ mm}^3$	

Crystal color and habit	Orange Plate
Diffractometer	Rigaku R-AXIS RAPID imaging plate
Theta range for data collection	2.009 to 24.407°.
Index ranges	-23<=h<=23, -14<=k<=16, -21<=l<=28
Reflections collected	27738
Independent reflections	5896 [R(int) = 0.1153]
Observed reflections (I > 2sigma(I))	3777
Completeness to theta = 24.407°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.668
Solution method	SHELXT-2014/5 (Sheldrick, 2014)
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)
Data / restraints / parameters	5896 / 0 / 546
Goodness-of-fit on F ²	1.032
Final R indices [I>2sigma(I)]	R1 = 0.0577, wR2 = 0.1252
R indices (all data)	R1 = 0.1098, wR2 = 0.1513
Extinction coefficient	n/a
Largest diff. peak and hole <i>Refinement Details for 8</i>	0.790 and -0.799 e.Å ⁻³

Low-temperature diffraction data (ω -scans) were collected on a Rigaku R-AXIS RAPID diffractometer coupled to an R-AXIS RAPID imaging plate detector with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of 8. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The PF6 group is disordered over two positions. The two groups were found in the difference map and their site occupancies were freely refined to converged values of nearly equal values. The site occupancies were subsequently fixed at 0.50. The thermal parameters of the fluorines were anticipated to be similar, and restrained to reflect this assertion. The PF6 groups were expected to behave as rigid bodies and restrained with rigid bond restraints. The full numbering scheme of 8 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529493 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S34. Full numbering scheme of 8. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	007-15178		
Empirical formula	C45 H46 Cl4 Mn3 N6 O6		
Formula weight	1073.50		
Temperature	93(2) K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	Fdd2		
Unit cell dimensions	a = 22.4234(3) Å	a = 90°.	
	b = 33.9852(6) Å	b = 90°.	
	c = 25.7898(4) Å	g = 90°.	
Volume	19653.5(5) Å ³		
Z	16		
Density (calculated)	1.451 Mg/m ³		
Absorption coefficient	8.605 mm ⁻¹		
F(000)	8784		
Crystal size	0.100 x 0.100 x 0.050 mm ³		
Crystal color and habit	Brown Plate		
Diffractometer	Rigaku Saturn 944+ CCD		
Theta range for data collection	2.600 to 66.878°.		
Index ranges	-26<=h<=26, -40<=k<=40, -30	<=l<=30	
Reflections collected	174793		
Independent reflections	8723 [R(int) = 0.0554]		
Observed reflections (I > 2sigma(I))	8668		
Completeness to theta = 66.878°	99.9 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.00000 and 0.29659		
Solution method	SHELXT-2014/5 (Sheldrick, 2014)		
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)		
Data / restraints / parameters	8723 / 1 / 582		
Goodness-of-fit on F ²	1.032		
Final R indices [I>2sigma(I)]	R1 = 0.0491, wR2 = 0.1346		
R indices (all data)	R1 = 0.0493, wR2 = 0.1348		
Absolute structure parameter	-0.0016(13)		
Extinction coefficient	n/a		
Largest diff. peak and hole <i>Refinement Details for 9</i>	1.718 and -1.076 e.Å ⁻³		

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu Ka ($\lambda = 1.54178$ Å) for the structure of 9. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst, 2008, A64, 112–122), All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The program SQUEEZE was used to compensate for the contribution of disordered solvents contained in voids within the crystal lattice from the diffraction intensities. This procedure was applied to the data file and the submitted model is based on the solvent removed data. Based on the total electron density found in the voids (847.4 e/Å³), it is likely that ~20 dichloromethane molecules are present in the unit cell. See "platon squeeze details" in this cif for more information. The full numbering scheme of 9 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529494 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S35. Full numbering scheme of 9. Non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	spider-16001	
Empirical formula	C45 H46 Cl2 Mn2 N6 O6	
Formula weight	947.66	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 19.8078(6) Å	a = 90°.
	b = 15.0917(4) Å	b=96.066(7)°.
	c = 29.829(2) Å	$g = 90^{\circ}$.
Volume	8867.0(7) Å ³	
Ζ	8	
Density (calculated)	1.420 Mg/m ³	
Absorption coefficient	0.745 mm ⁻¹	
F(000)	3920	
Crystal size	0.200 x 0.200 x 0.200 mm ³	
Crystal color and habit	Colorless Block	
Diffractometer	Rigaku R-AXIS RAPID imagi	ng plate
Theta range for data collection	3.029 to 27.485°.	
Index ranges	-25<=h<=25, -19<=k<=19, -38	3<=l<=38
Reflections collected	101124	
Independent reflections	19783 [R(int) = 0.0980]	
Observed reflections (I > 2sigma(I))	12603	
Completeness to theta = 25.242°	98.7 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	1.000 and 0.844	
Solution method	SHELXT-2014/5 (Sheldrick, 2	014)
Refinement method	SHELXL-2014/7 (Sheldrick, 2	014)
Data / restraints / parameters	19783 / 0 / 1107	
Goodness-of-fit on F ²	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0520, wR2 = 0.1054	
R indices (all data)	R1 = 0.1011, wR2 = 0.1322	
Extinction coefficient Largest diff. peak and hole0.792 and -0.736 e.Å ⁻³	n/a	

 $\underline{ Table \ S25}. \ Crystal \ data \ and \ structure \ refinement \ for \ 10.$

Refinement Details for 10

Low-temperature diffraction data (ω -scans) were collected on a Rigaku R-AXIS RAPID diffractometer coupled to an R-AXIS RAPID imaging plate detector with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of 10. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The program SQUEEZE was used to compensate for the contribution of disordered solvents contained in voids within the crystal lattice from the diffraction intensities (A.L.Spek, Acta Cryst. 2009, D65, 148-155). This procedure was applied to the data file and the submitted model is based on the solvent removed data. Based on the total electron density found in the voids $(33e/440Å^3)$, it is likely that ~2 water molecules are present in the unit cell. See " platon squeeze details" in the .cif for more information. Several reflections were improperly recorded due to instrument artifacts. These reflections were omitted. The full numbering scheme of 10 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529495 contains the supplementary crystallographic data for this paper. These data can be free of charge from The Cambridge Crystallographic Data obtained Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S36. Full numbering scheme of 10. The two dimers in the asymmetric unit are shown separately, and non-heteroatom bound hydrogen atoms have been omitted for clarity.

Identification code	shelx_163B1	
Empirical formula	C30 H34 N4 Ni O4	
Formula weight	573.32	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 8.3214(5) Å	a = 90°.
	b = 14.6642(9) Å	b= 105.640(7)°.
	c = 11.6946(8) Å	$g = 90^{\circ}$.
Volume	1374.22(16) Å ³	
Z	2	
Density (calculated)	1.386 Mg/m ³	
Absorption coefficient	0.749 mm ⁻¹	
F(000)	604	
Crystal size	0.200 x 0.200 x 0.100 m	m ³
Crystal color and habit	Brown Plate	
Diffractometer	Rigaku Mercury275R Co	CD
Theta range for data collection	3.031 to 27.485°.	
Index ranges	-10<=h<=10, -19<=k<=	19, -15<=l<=15
Reflections collected	20526	
Independent reflections	3136 [R(int) = 0.0354]	
Observed reflections (I > 2sigma(I))	2892	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equ	uvalents
Solution method	SHELXT-2014/5 (Sheld	rick, 2014)
Refinement method	SHELXL-2014/7 (Sheld	rick, 2014)
Data / restraints / parameters	3136 / 0 / 184	
Goodness-of-fit on F ²	1.135	
Final R indices [I>2sigma(I)]	R1 = 0.0339, wR2 = 0.00	691
R indices (all data)	R1 = 0.0386, WR2 = 0.07	710
Extinction coefficient	n/a	
Largest diff. peak and hole	0.785 and -0.231 e.Å ⁻³	

Table S26. Crystal data and structure refinement for 11.

<u>Table 527</u> . Hydrogen bolids for TT [A and]	Table S27.	Hydrogen	bonds for	11 [Ä	and °] Å and
--	------------	----------	-----------	--------------	--------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(1)	0.87(2)	1.77(2)	2.6011(16)	157(2)

Refinement Details for 11

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCX Mini diffractometer (sealed tube) coupled to a Rigaku Mercury 275R CCD detector with Mo K α ($\lambda = 0.71075$ Å) for the structure of **11**. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. All carbon-bound hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups. H2 was found in the difference map and semi-freely refined with a distance restraint of 0.85(2) Å for O-H distance. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of **11** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number **1529496** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif

Figure S37. Full numbering scheme of 11. Non-heteroatom bound hydrogen atoms have been omitted for clarity.
Identification code	mini-16098	mini-16098	
Empirical formula	C36 H47 Cl4 N4 Ni2 O8		
Formula weight	922.99		
Temperature	93(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 14.8680(4) Å	$\alpha = 90^{\circ}$.	
	b = 16.1416(4) Å	$\beta = 95.451(3)^{\circ}.$	
	c = 16.3814(5) Å	$\gamma = 90^{\circ}$.	
Volume	3913.65(19) Å ³		
Ζ	4	4	
Density (calculated)	1.566 Mg/m ³	1.566 Mg/m ³	
Absorption coefficient	1.291 mm ⁻¹	1.291 mm ⁻¹	
F(000)	1916		
Crystal size	0.200 x 0.200 x 0.100 mm ³		
Theta range for data collection	2.498 to 27.484°.		
Index ranges	-19<=h<=19, -20<=k<=20, -21<=l<=21		
Reflections collected	34082		
Independent reflections	4488 [R(int) = 0.0553]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.96425		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4488 / 25 / 298	4488 / 25 / 298	
Goodness-of-fit on F ²	1.059	1.059	
Final R indices [I>2sigma(I)]	R1 = 0.0332, wR2 = 0.0	R1 = 0.0332, $wR2 = 0.0756$	
R indices (all data)	R1 = 0.0461, wR2 = 0.0	R1 = 0.0461, $wR2 = 0.0810$	
Largest diff. peak and hole	0.351 and -0.492 e.Å ⁻³	0.351 and -0.492 e.Å ⁻³	

Table S28. Crystal data and structure refinement for 12.

Refinement Details for 12

Low-temperature diffraction data (ω -scans) were collected on a Rigaku SCX Mini diffractometer coupled to a Rigaku Mercury275R CCD with Mo K α radiation ($\lambda = 0.71073$ Å) for the structure of mini-16098. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112– 122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The only exception was atom H1, which was found in the difference map and semifreely refined. The O-H distance was restrained to 0.85(2) Å, as suggested by the difference map. Several low angle reflections were obscured by the beam stop and subsequently omitted. The acetate counter ion was modeled as disordered across the crystallographic 2-fold axis. The special position constraints were suppressed and the site occupancies were suppressed. The dichloromethane molecule was positionally disordered. The two models were distinguished with atom label suffixes A and B. The site occupancies of the two models were fixed near their converged values of equal occupancies. The C-Cl bond distances were anticipated to be chemically identical and restrained to reflect this expectation. The two models were also refined with the aid of rigid bond restraints as the thermal displacement of the atoms within the solvent behave as an ensemble. The full numbering scheme of compound 12 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1529497 (mini-16098) contains the supplementary crystallographic data for this paper. These data can be obtained Crystallographic free of charge from The Cambridge Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S38. The complete numbering scheme of asymmetric unit of **12** with 50% thermal ellipsoid probability levels. Most of the hydrogen atoms have been omitted for clarity; those shown are arbitrary circles.

 Table S29. Crystal data and structure refinement for complex 13.
Identification code 007-17059-cot3-2 sq Empirical formula C44 H44 Co2 N6 O6 Formula weight 870.71 Temperature 93(2) K Wavelength 1.54187 Å Crystal system Monoclinic Space group $P2_1/c$ Unit cell dimensions a = 8.4079(2) Å $a = 90^{\circ}$. $b = 12.0756(2) \text{ Å } b = 93.505(7)^{\circ}.$ $c = 19.9987(14) \text{ Å } g = 90^{\circ}.$ Volume 2026.68(15) Å3 Ζ2 Density (calculated) 1.427 Mg/m3 Absorption coefficient 6.873 mm-1 F(000) 904 Crystal size 0.200 x 0.200 x 0.100 mm3 Crystal color and habit Brown Plate Diffractometer Theta range for data collection 4.279 to 66.599°. Index ranges -9<=h<=9, -14<=k<=14, -23<=l<=23 Reflections collected 62645 Independent reflections 3562 [R(int) = 0.1705]Observed reflections (I > 2 sigma(I)) 2519Completeness to theta = $66.599^{\circ} 99.7 \%$ Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.000 and 0.852 Solution method SHELXT-2014/5 (Sheldrick, 2014) Refinement method SHELXL-2014/7 (Sheldrick, 2014) Data / restraints / parameters 3562 / 0 / 264 Goodness-of-fit on F2 1.092 Final R indices [I > 2 sigma(I)] R1 = 0.0793, wR2 = 0.2055 R indices (all data) R1 = 0.1063, wR2 = 0.2592Extinction coefficient n/a Largest diff. peak and hole 0.626 and -1.118 e.Å-3

<u>Refinement Details for 13</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of **9**. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The program SQUEEZE was used to compensate for the contribution of disordered water molecules contained in voids within the crystal lattice from the diffraction intensities. This procedure was applied to the data file and the submitted model is based on the solvent removed data. Based on the total electron density found in the voids (78 e/A3), it is likely that ~8 water molecules are present in the unit cell. See "_platon_squeeze_details" in this .cif for more information. The full numbering scheme of 13 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1552433 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S39. The complete numbering scheme of the asymmetric unit of **13** with 50% thermal ellipsoid probability levels. Hydrogen atoms have been omitted for clarity.

Figure S40. Structure of **13** with 25% thermal ellipsoid probability levels. Hydrogen atoms have been omitted for clarity.

¹ (a) <u>Epsztajn</u>, J.; <u>Bieniek</u>, A. Applications of organolithium and related reagents in synthesis. Part 3. A general study of the reaction of lithium alkyls with pyridine ketones. *J. Chem. Soc., Perkin Trans. 1*, **1985**, 213. (b) Imamoto, T.; Kusumoto, T.; Yokoyama, M. Generation and Reactivities of Organocerium Reagents. *Chem. Commun.*, **1982**, 1042.

² Boxer, M. B.; Yamamoto, H. Super silyl group for diastereoselective sequential reactions: access to complex chiral architecture in one pot. J. Am. Chem. Soc. 2007, 129, 2762.

³ Carey, F. A.; Sundberg, R. J. Advanced organic chemistry, part a: structure and mechanisms, 5th ed.; Springer: New York, 2007; p 682.

⁴ Kitos, A. A.; Efthymiou, C. G.; Manos, M. J.; Tasiopoulos, A. J.; Nastopoulos, V.; Escuer, A.; Perlepes, S. P. Interesting copper(II)assisted transformations of 2-acetylpyridine and 2-benzoylpyridine. *Dalton Trans.* **2016**, *45*, 1063.