Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information (ESI) for

Highly Electron Deficient Tetrabenzoquinone Appended Ni(II) and Cu(II) Porphyrins: Spectral, Solvatochromism, Electrochemical Redox and Tuneable F⁻ and CN⁻ Sensing Properties

Pinki Rathi, Mandeep K. Chahal and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

Table of contents

	Page No	
Scheme S1. Synthetic route to benzoquinone substituted metallated porphyrinogens (1 and 2).		
Figure S1. ¹ H NMR <i>meso</i> -tetrakis(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)porphyrin in CDCl ₃ at 298K.		
Figure S2. MALDI-TOF mass spectrum of meso-tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin.		
Figure S3. ¹ H NMR spectrum of Ni-diOxP (1) in CDCl ₃ at 298K.		
Figure S4. MALDI-TOF mass spectrum of Ni-diOxP (1).		
Figure S5. IR spectra of Ni-diOxP (1) and Ni-dtBTPP (3).		
Figure S6. MALDI-TOF mass spectrum of Cu-diOxP (2).		
Figure S7. IR spectra of Cu-diOxP (2) and Cu-dtBTPP (4).		
Figure S8. DPV traces of Ni-dtBTPP (3) and Cu-dtBTPP (4) in CH ₂ Cl ₂ containing 0.1 M TBAPF ₆ at 298 K.		
Figure S9. DPV traces of Ni-diOxP (1) and Cu-diOxP (2) in CH ₂ Cl ₂ containing 0.1 M TBAPF ₆ at 298 K.		
Figure S10. UV-Vis spectral response of 2 (3.15×10^{-5} M) upon incremental addition of CN ⁻ (0- 4.78 X 10 ⁻	8	
⁵ , 1.5 equiv.) in toluene. Inset show BH-plot.		
Figure S11. UV-Vis spectral response of 2 (3.15×10^{-5} M) upon incremental addition of F ⁻ (0-7.29 X 10 ⁻⁴	8	
M, 23 equiv.) in toluene. Inset show BH-plot.		
Figure S12. Absorption spectra of 2 $(3.15 \times 10^{-5} \text{ M})$ in the presence of different anions.		
Figure S13. Ratiometric absorbance changes (A ₄₂₂ /A ₄₀₅) of 2 (3.15×10 ⁻⁵ M) on addition of 1.5 equiv of CN ⁻	9	
and 10 equiv of other anions. Green bars indicate the blank and in presence of other interfering anions, and		
red bars indicate the addition of CN ⁻ to the interfering anions.		
Figure S14. Ratiometric absorbance changes (A_{422}/A_{404}) of 2 $(3.15 \times 10^{-5} \text{ M})$ on addition of excees of F ⁻ and	10	
other anions. Green bars indicate the blank and in presence of other interfering anions, and red bars indicate		
the addition of F ⁻ to the interfering anions.		
Figure S15. ¹ H-NMR spectra of 1 in the absence and presence of F ⁻ ions in CDCl ₃ .		
Figure S16. ¹ H-NMR spectra of 1 in the absence and presence of CN ⁻ ions in CDCl ₃ .	11	
Figure S17. (a) Cyclic Voltametric (b) DPV (in V vs Ag/ AgCl) traces recorded for 1 (black) and 1•2CN ⁻	11	
(red) in CH ₂ Cl ₂ containing 0.1 M TBAPF ₆ with a scan rate of 0.1 V/s at 298 K.		
Figure S18. Cyclic Voltametric (in V vs Ag/ AgCl) traces recorded for 2 (black) and $2 \cdot 2 \text{CN}^-$ (red) in CIL CIL containing 0.1 M TD ADE with a superstance of 0.1 M/cut 200 K	12	
CH_2CI_2 containing 0.1 M 1BAPF ₆ with a scan rate of 0.1 V/s at 298 K. Figure S10 Absorption spectra of Ni dtPTPP (3) in the absorption and presence of 150 equip. of fluoride ions	12	
Figure S19. Absorption spectra of Cu dtDTDD (1) in the absence and presence of 150 equiv. of fluoride	12	
Figure S20. Absorption spectra of Cu-dtBTPP (4) in the absence and presence of 150 equiv. of fluoride	15	
Figure S21. Absorption spectra of Ni-dtBTPP (3) in the absence and presence of >200 equiv. of fluoride	13	
ions.	-	
Figure S22. Absorption spectra of Cu-dtBTPP (4) in the absence and presence of >200 equiv. of fluoride	14	
ions.		
Figure S23. Absorption spectra of Ni-dtBTPP (3) in the absence and presence of >200 equiv. of cyanide ions.	14	

Figure S24. Absorption spectra of Cu-dtBTPP (4) in the absence and presence of >200 equiv. of cyanide		
Figure S25. B3LYP/LANL2DZ-optimized geometry showing (a) top as well as (b) side views of Ni-diOxP		
(1); H atoms are omitted for clarity. In the side view, the <i>meso</i> -phenyl substituents are not shown for clarity.		
Figure S26. B3LYP/LANL2DZ-optimized geometry showing (a) top as well as (b) side views of Cu-diOxP		
(2); H atoms are omitted for clarity. In the side view, the meso-phenyl substituents are not shown for clarity.		
Figure S27. UV-vis spectra of Cu-diOxP (2) after addition of aqueous solution KCN and 18-crown-6.	16	
Figure S28. Ratiometric absorbance changes of 2 on addition of CN ⁻ and 10 equiv excess of other anions in		
aqueous medium. Blue bars indicate the blank and in presence of other interfering anions, and red bars		
indicate the addition of CN ⁻ to the interfering anions.		
Figure S29. Ratiometric absorbance changes of 1 on addition of CN- and 10 equiv excess of other anions in		
aqueous medium. Blue bars indicate the blank and in presence of other interfering anions, and red bars		
indicate the addition of CN ⁻ to the interfering anions.		
Table S1. Electronic spectral data of Ni-diOxP (1) in different solvents at 298 K.		
Table S2. Electronic spectral data of Cu-diOxP (2) in different solvents at 298 K.		

Scheme S1. Synthetic route for tetrabenzoquinone substituted Ni(II) and Cu(II)-porphyrins (1 and 2).

Figure S1. ¹H NMR spectrum of *meso*-tetrakis(3,5-di-*tert*-butyl-4-hydroxyphenyl)porphyrin in CDCl₃ at 298K.

Figure S2. MALDI-TOF mass spectrum of *meso*-tetrakis(3,5-di-*tert*-butyl-4-hydroxyphenyl) porphyrin.

Figure S3. ¹H NMR spectrum of 5,10,15,20-tetrakis(3,4-dioxo-5-*t*-butylcyclohexa-1,5-dienyl)-porphyrinatonickel(II), Ni-diOxP (1) in CDCl₃ at 298K.

Figure S4. MALDI-TOF mass spectrum of Ni-diOxP (1).

Figure S5. IR spectra of Ni-diOxP (1) and Ni-dtBTPP (3).

Figure S6. MALDI-TOF mass spectrum of Cu-diOxP (2).

Figure S7. IR spectra of Cu-diOxP (2) and Cu-dtBTPP (4).

Figure S8. DPV traces of Ni-dtBTPP (**3**) and Cu-dtBTPP (**4**) in CH₂Cl₂ containing 0.1 M TBAPF₆ at 298 K.

Figure S9. DPV traces of Ni-diOxP (1) and Cu-diOxP (2) in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298 K.

Solvent	B and Q bands, nm
CH ₂ Cl ₂	397 (5.12), 501 (4.42), 611 (4.01)
Dimethyl Formamide	398 (5.04), 544 (4.16), 598 (3.97)
Acetone	394 (5.11), 543 (4.2), 600 (3.98)
DMSO	399 (5.07), 542 (4.22), 599 (4.00)
Toluene	402 (5.13), 506 (4.48), 609 (4.06)
Methanol	395 (5.1), 536 (4.23), 597 (4.03)
1,4-Dioxane	398 (4.97), 549 (4.12)
1,2-Dichlorobenzene (1,2-	400 (5.1), 504 (4.42), 620 (4.08)
DCB)	
Ethanol	398 (4.89), 500 (4.24), 610 (3.92)
Triehylamine	426 (5.14), 534 (4.14)
Piperdine	441 (5.13), 539 (4.03), 615 (3.83)
Chloroform	398 (5.1), 505 (4.42), 617 (4.04)
Pyridine	415 (5.05), 552 (4.21), 705 (3.88)
1,1,2,2-Tetrachloroethane	400 (5.13), 513 (4.41), 628 (4.08)
(1,1,2,2-TCE)	

Table S1. Electronic spectral data of Ni-diOxP (1) in different solvents at 298 K.

Table S2. Electronic spectral data of Cu-diOxP (2) in different solvents at 298 K.

Solvent	B and Q bands, nm
Ethyl acetate	398 (4.85), 557 (3.88), 610 (3.62)
Dimethyl formamide (DMF)	405 (4.85), 553 (3.88), 620 (3.62)
Acetone	398 (4.83), 558 (3.82), 614 (3.6)
DMSO	406 (4.83), 560 (3.88), 631 (3.69)
THF	401 (4.86), 560 (3.88), 618 (3.68)
Toluene	403 (4.72), 568 (3.81), 618 (3.7)
Methanol	401 (4.83), 562 (3.84), 622 (3.67)
1,4-dioxane	401 (4.81), 560 (3.87), 612 (3.67)
1,2-dichlorobenzene (1,2-	404 (4.86), 519 (4.1), 642 (3.74)
DCB)	
Ethanol	402 (4.83), 555 (3.94), 626 (3.76)
Triehylamine	424 (4.96), 543 (3.87), 585 (3.28)
Piperdine	435 (4.9), 554 (3.88), 600 (3.49)
Chloroform	401 (4.94), 509 (4.15), 630(3.76)
Pyridine	410 (4.77), 568 (3.88), 642(3.67)
1,1,2,2-Tetrachloroethane	402 (4.94), 518 (4.1), 638 (3.78)
(1,1,2,2-TCE)	

Figure S10. UV-Vis spectral response of **2** (3.15 X 10⁻⁵ M) upon incremental addition of CN⁻ (0- 4.78 \times 10⁻⁵ M, 1.5 equiv.) in toluene. Inset shows BH-plot.

Figure S11. UV-Vis spectral response of **2** (3.15 X 10⁻⁵ M) upon incremental addition of F^- (0-7.29 × 10⁻⁴ M, 23 equiv.) in toluene. Inset shows BH-plot.

Figure S12. Absorption spectra of 2 $(3.15 \times 10^{-5} \text{ M})$ in the presence of different anions.

Figure S13. Ratiometric absorbance changes $(4_{4}p_{105})^{-1} N 2_{3.15 \times 10^{-5}} M$ on addition of 1.5 equiv of CN⁻ and 10 equiv of other anions. Green bars indicate the brank and in presence of other interfering anions, and red back indicate the addition of CN to the interfering anions.

$$OAc + @NO_{4}H = OC_{4}^{N} + CN^{-} NO_{3}^{-} + CN^{-}$$

 $H_{1}PO_{4}^{-} + CN^{-}$

PF -+ CN -

A₄₂₂/A₄₀₄

Figure S14. Ration $\mathbf{G}_{\mathbf{F}}$ in the bars indicate the blank and in presence of other interfering anions, and red bars indicate the addition of F to the interfering anions.

H₂PO₄⁻ + F⁻

Figure S15. ¹H-NMR spectra of 1 in the absence and presence of F⁻ ions in CDCl₃.

Figure S16. ¹H-NMR spectra of 1 in the absence and presence of CN⁻ ions in CDCl₃.

Figure S17. (a) Cyclic Voltametric (b) DPV (in V vs Ag/ AgCl) traces recorded for 1 (black) and $1-2CN^{-}$ (red) in CH₂Cl₂ containing 0.1 M TBAPF₆ with a scan rate of 0.1 V/s at 298 K.

Figure S18. Cyclic Voltametric (in V vs Ag/ AgCl) traces recorded for **2** (black) and $2 \cdot 2CN^-$ (red) in CH₂Cl₂ containing 0.1 M TBAPF₆ with a scan rate of 0.1 V/s at 298 K.

Figure S19. Absorption spectra of Ni-dtBTPP (3) in the absence and presence of 150 equiv. of fluoride ions.

Figure S20. Absorption spectra of Cu-dtBTPP (4) in the absence and presence of 150 equiv. of fluoride ions.

Figure S21. Absorption spectra of Ni-dtBTPP (3) in the absence and presence of >200 equiv. of fluoride ions.

Figure S22. Absorption spectra of Cu-dtBTPP (4) in the absence and presence of >200 equiv. of fluoride ions.

Figure S23. Absorption spectra of Ni-dtBTPP (3) in the absence and presence of >200 equiv. of cyanide ions.

Figure S24. Absorption spectra of Cu-dtBTPP (4) in the absence and presence of >200 equiv. of cyanide ions.

Figure S25. B3LYP/LANL2DZ-optimized geometry showing (a) top as well as (b) side views of NidiOxP (1); hydrogens are omitted for clarity. In the side view, the *meso*-phenyl substituents are not shown for clarity.

Figure S26. B3LYP/LANL2DZ-optimized geometry showing (a) top as well as (b) side views of CudiOxP (2); hydrogens are omitted for clarity. In the side view, the *meso*-phenyl substituents are not shown for clarity.

Figure S27. UV-vis spectra of Cu-diOxP (2) after addition of aqueous solution KCN and 18-crown-6.

Figure S28. Ratiometric absorbance changes of **2** on addition of CN^- and 10 equiv excess of other anions in aqueous meium. Blue bars indicate the blank and in presence of other interfering anions, and red bars indicate the addition of CN^- to the interfering anions.

Figure S29. Ratiometric absorbance changes of 1 on addition of CN^- and 10 equiv excess of other anions in aqueous medium. Blue bars indicate the blank and in presence of other interfering anions, and black bars indicate the addition of CN^- to the interfering anions.