Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information

Synthesis and Characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia

Boitumelo J Matsoso^{a,b}, Kamalakannan Ranganathan^{a, b}, Bridget K Mutuma^{a, b}, Tsenolo Lerotholi^b,

Glenn Jones^{c,d} and Neil J Coville^{a, b*}

^a DST-NRF Centre of Excellence in Strong Materials and ^bMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 2050, Johannesburg, South Africa

^cDepartment of Chemistry, University College London, Gordon Street, London, UK

^dJohnson Matthey Technology Center, Blount's Court,, Sonning Common, Reading, RG4 9NH, UK.

Synthesis and transfer of BCNO films

Large area BCNO films were grown on a Cu substrate using an atmospheric pressure chemical vapour deposition method with CH₄, H₂, NH₃ (10% in Ar), and H₃BO₃ as precursor materials. Initially, the Cu foil was electrochemically cleaned for 90 sec in an aqueous mixture of 150 mL H₃PO₃, 150 mL ethanol, 30 mL iso-propanol and 3.0 g urea using a 12 V current³⁵. The Cu foil was placed at the center of a 20 cm \times 100 cm guartz tube, and a guartz boat containing 100 mg of H₃BO₃ was at placed different distances (2, 4, 6, 8, 10, and 12 cm) from the Cu substrate. H₃BO₃ placed at these distances allowed the vaporization temperature of H₃BO₃ to be varied from ~ 300°C to ~ 1000 °C. The quartz tube was then inserted in a horizontal CVD furnace (Fig. S1), after which the furnace was heated to 1000 °C under H₂ and Ar atmospheres at the heating rate of 10 °C/min. After annealing for 30 min, growth of the BCNO films was achieved for 10 min by introducing 20 sccm CH₄ and 5 sccm NH₃ into the reaction chamber. For characterization purposes, the films were transferred onto a 300 nm SiO₂/Si substrate, TEM Cu grids, and fused silica substrates using the PMMA (4.6 % m/v in chlorobenzene) - assisted electrochemical delamination method³⁶. The films were named according to the distance of the boric acid from the growth substrate in the reaction chamber. e.g. BCNO-2 stands for the BCNO films grown using boric acid placed at 2 cm distance from the Cu foil.

Figure S1: (a) CVD setup, (b) growth profile and (c) temperature profile for the growth of the BCNO films.

Figure S2: AFM topographic images (a - f) and estimated thickness plot (g) of BCNO films grown at 2 cm - 12 cm, respectively.

Figure S3: Low magnification TEM images of BCNO hybrid films grown at (a) 2 cm, (b) 4 cm, (c) 6 cm, (d) 8 cm, (e) 10 cm, and (f) 12 cm, respectively. Inset shows the TEM images of the respective BCNO films.

Figure S4: Deconvolution of defect induced D-bands for BCNO films grown at 2 cm -12 cm (a - f) showing the B-C, D, and the *h*-BN peaks, respectively.

Figure S5: XPS spectra showing deconvoluted curves of (a) B1s, (b) C1s, (c) N1s, and O1s (d) of BN-doped graphene-BCN hybrid films grown at 4 cm using 100 mg H_3BO_3 and 20 sccm CH_4 .

Figure S6: XPS spectra showing deconvoluted curves of (a) B1s, (b) C1s, (c) N1s, and O1s (d) of BN-doped graphene-BCN hybrid films grown at 6 cm using 100 mg H_3BO_3 and 20 sccm CH_4 .

Figure S7: XPS spectra showing deconvoluted curves of (a) B1s, (b) C1s, (c) N1s, and O1s (d) of BN-doped graphene-BCN hybrid films grown at 8 cm using 100 mg H_3BO_3 and 20 sccm CH_4 .

Figure S8: XPS spectra showing deconvoluted curves of (a) B1s, (b) C1s, (c) N1s, and O1s (d) of BN-doped graphene-BCN hybrid films grown at 10 cm using 100 mg H_3BO_3 and 20 sccm CH_4 .

Figure S9: XPS spectra showing deconvoluted curves of (a) B1s, (b) C1s, (c) N1s, and O1s (d) of BN-doped graphene-BCN hybrid films grown at 12 cm using 100 mg H₃BO₃ and 20 sccm CH₄.

Figure S10: XPS spectra showing Cu2p of BCNO films grown at 2cm to 12 cm.

Figure S11: Evolution of bond concentration with increasing growth distance from the hot zone: a-d representing % concentrations of B, C, N and O atoms in (a) B1s, (b) C1s, (c) N1s and (d) O1s, respectively.

Figure S12: Tauc's plots of BCNO films grown at (a) 4 cm, (b) 6 cm, (c) 8 cm, and (d) 10 cm growth distances from the hot zone.

	Elemental ratio (at. %)				
Growth distance	B/N	B/C	N/C	B/O	O/C
2 cm	1,79	0,281	0,164	0,298	0,663
4 cm	1,01	0,408	0,0102	0,699	0,563
6 cm	1,40	0,695	0,495	1,083	0,642
8 cm	1,28	0,336	0,262	0,727	0,462
10 cm	1,12	0,138	0,124	0,288	0,498
12 cm	1,41	0,032	0,0225	0,0826	0,373

Table S1: Elemental ratio of all constituent atoms in the BCNO films