Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Material

Sucrose-Mediated Mechanical Exfoliation of Graphite: A Green Method for the Large Scale Production of Graphene and its application in Catalytic Reduction of 4 - Nitrophenol

Sowmya Balasubramanyan,¹ SreenikeshSasidharan, ¹Raveendran Poovathinthodiyil,² Resmi M. Ramakrishnan,¹Binitha N Narayanan.^{1,*}

¹Department of Chemistry, Sree Neelakanta Government Sanskrit College Pattambi

(Affiliated to the University of Calicut), Palakkad-679306, Kerala, India

Ph: +91 466-2212223. Fax: +91 466-2212223, *binithann@yahoo.co.in

²Department of Chemistry, University of Calicut, Kerala-673 635, India

Figure S1: (a) Stable dispersions of graphene in DMF and NMP after kept for 1 month and (b) UV-Visible spectra of graphene dispersion in DMF obtained after 15 minute sonication and centrifugation for 15 minute at 1000 rpm.

Figure S2: XRD pattern of graphene obtained using varied graphite/sucrose weight ratios

Figure S3. SEM images of (a) Ball-milled Sucrose and (b) GB

Figure S4. AFM images of GN-30

Figure S5: (a) UV-Vis spectrum of reaction mixture after the adsorption 4-Nitrophenol on GN-30 without using NaBH₄ and (b) UV-Vis spectrum of reaction mixture after treating with NaBH₄ in the absence of GN-30.

Material	Fe Wt %	Cu Wt %	Mn Wt %	Cr Wt %	Ni Wt %
Graphite	0.89	0.016	0.017	0.0075	0.001
Graphene	1.75	0.018	0.021	0.014	0.027

 Table S1. Weight percentage of metal impurities present in initial graphite and graphene

 prepared by ball milling obtained from ICP-AES analysis

S1. Surface area determination by methylene blue adsorption method

Surface area of graphene wascalculated by methylene blue adsorption method¹. This simple method provides more accurate determination of surface area of graphitic materials than the nitrogen adsorption method, which is largely affected by the state of agglomeration. A known amount of material was dispersed in an excess amount of known volume of standard methylene blue solution in 70% ethanol solution via ultrasound sonication and stirred for 2-3 h to attain the equilibrium state. The concentration of the remaining methylene blue solution was determined by measuring the absorbance at 665 nm using UV-Visible spectrophotometer. The adsorption capacity of the catalyst was calculated by the given equation:

$$q_e = \frac{(C_0 - C_e) V}{m}$$

where, ' q_e ' is the adsorption capacity at equilibrium (mg/g), ' C_0 'is the initial methylene blue concentration, ' C_e ' is the methylene blue concentration after adsorption (mg/ L), 'V' is the volume of the solution (L) and 'm' is the mass of adsorbent. Also by assuming methylene blue adsorbed on a catalyst forms a monolayer, from the ' q_e ' value it can be calculated the surface area of the catalyst by following equation:

$$S = q_m N A_m$$

where, 'S' is the specific surface area (m^2/g) , 'q_m' the amount adsorbed methylene blue in the monolayer (g/g), 'Am' is the area occupied by one MB molecule is $1.30 \times 10^{-18} m^2$ per molecule. 'N' is the Avogadro number (6.02×10^{23} molecules per mol), 'M' is the molar mass of methylene blue (373.89 g/mol).