Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Axially Chiral Amino Acid Scaffold as an Efficient Fluorescent Discriminator of Methanol-Ethanol

SubhenduSekhar Bag*,^{1,2} and Subhashis Jana¹

¹Department of Chemistry and ²Centre for the Environment, Indian Institute of Technology Guwahati-781039, India. Tel: +91-258-2324; Fax: +91-258-2349; Email: <u>ssbag75@iitg.ernet.in</u>

Topics	Page
1. General Experimental Section (Materials and Methods)	S2
2. Synthetic Schemes	S2
3. Synthetic Procedure and Characterization Data of Synthesized	S3-S4
Sensor 1, 2 and 3.	
4. Study of Photophysical Properties/Spectra and Summary Table	S5-S14
of Sensor 1, 2 and 3.	
5. Life time table and Trace	S15-S20
6. Picture under Fluorescence light in MeOH and With Increasing	S20-S22
Volume of EtOHSolvent	
7. Ethanol Vapor Sensing	S22-S24
8. Determination of the Detection Limit	S25-S26
9. Study of IR Spectroscopy	S26-S34
10. Study of Circular Dichroism Spectroscopy	S35
11. Optimized Structure Using Maestro vs. 9.1	S36
12. Optimized Structure Using Gaussian 09	S37-S46
13. ¹ H and ¹³ C NMR spectra of synthesized compounds	S47-S52

1. General Experimental Section (Materials and Methods)

All reactions were carried out under nitrogen atmosphere in flame-dried glassware, using a nitrogen filled balloon. Organic extracts were dried over anhydrous sodium sulfate. Solvents were removed in a rotary evaporator under reduced pressure. Silica gel (60- 120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F254 (0.25). ¹H NMR spectra were recorded either at 400 MHz or at 600 MHz and ¹³C NMR spectra were recorded either at 100 MHz or at 150 MHz (mentioned accordingly). Coupling constants (J value) were reported in hertz (Hz). The chemical shift were shown in ppm downfield form tetramethylsilane, using residual chloroform (δ = 7.26 in ¹H NMR, δ = 77.23 in ¹³C NMR), DMSO (δ = 2.5 in ¹H NMR, δ = 39.5 in ¹³C NMR), as an internal standard. Mass spectra were recorded with a HR mass spectrometer and data analysed by using built-in software. IR spectra were recorded in KBr on a FT-IR spectrometer.

2. Synthetic Schemes

Reagents and Condition: (a) $(Boc)_2O$, THF, NaH, reflux, 12 h; (b)TMS-acetylene, $PdCl_2(PPh_3)_2$, Cul, Benzene : ⁿButyl amine (2:1), 70 °C, 6h; (c) TBAF, THF, r.t, 1 h; (d) $SOCl_2$, methanol, reflux, 3h; (e) $NaNO_2$, HCl/NaN_3 , 0 °C, 2 h; (f) $CuSO_4$, NaAsc, Et_3N , THF: H_2O (4:1), rt, 12 h; (g) LiOH, THF: H_2O (5:1), rt, 1 h; (h) DCM :TFA(1:1), rt, 1 h; (i) aq. Et_3N ; (j) 3-Pyrene carboxylic acid, MsCl, N-methyl imidazole, DCM, 0-50 °C, 6 h; (k) Pyren-1-ylmethanamine, EDC.HCl, DMAP, DMF, 0 °C - rt, 6h.

Scheme S1: Synthetic scheme for the triazolyl aromatic amino acid scaffold (1,^{Ar}TAA) and its mono and di-pyreneamide derivatives (2, PyAm-^{Ar}TAA; 3, Py₂Am-^{Ar}TAA).

- **3.** Synthetic route of aromatic triazolyl amino acid scaffold 1 and its pyrenyl derivatives (^{Ar}TAA)
- **3.1.** Synthesis of methyl 3-(4-(3-((tert-butoxycarbonyl)amino)phenyl)-1H-1,2,3-triazol-1yl)benzoate (8): The compound 8 was synthesized as our previous published protocol.
- **3.2.** Synthesis of 3-(4-(3-((*tert-butoxycarbonyl*)amino)phenyl)-1H-1,2,3-triazol-1-yl)benzoic acid (1):To a solution of the starting material 8, (250 mg, 0.65 mmol) in THF : H₂O = 5 : 1 (6 ml), lithium hydroxide (1.5 equivalent) was added at 0 °C. The reaction mixture was

stirred for about 3-4 hour until starting material was fully consumed. Reaction was monitored by TLC. After completion of the reaction, solvent was dried by a rotary evaporator. Then water (4-5 ml) was added to the reaction mixture and cooled to 0 $^{\circ}$ C. The dilute acetic acid was added to the reaction mixture to adjust pH~ 3 to 4. The reaction mixture was extracted with EtOAc. The combined organic layers were

dried over Na₂SO4. Title compound **9** (222 mg, 0.58 mmol) was isolated as a white solid material in pure form by column chromatography (Si-gel, PE :EtOAc = 1:2).. Yield 93%. ¹H NMR (d₆-DMSO; 400 MHz) δ 1.47 (9H, s); 7.36 (2H, s); 7.51 (1H, s); 7.75 (1H, t, *J* = 7.6 Hz); 8.04 (1H, d, *J* = 6.8 Hz), 8.16 (1H, s); 8.08 (1H, d, *J* = 8.0 Hz); 8.46 (1H, s); 9.33 (1H, s); 9.47 (1H, s); ¹³C NMR (d₆-DMSO; 100 MHz) δ 28.4, 79.6, 115.3, 118.5, 119.9, 120.1, 120.6, 120.7, 124.4, 129.5, 130.8, 132.9, 137.1, 140.4, 147.9, 153.2, 166.7. HRMS calcd for C₂₀H₂₁N₄O₄ [M + H]⁺ 379.1557, found 379.1558.

3.3. Synthesis of methyl 3-(4-(3-aminophenyl)-1H-1,2,3-triazol-1-yl)benzoate (10): The compound 8 was dissolved in dry DCM and cooled to 0 °C. Then equal amount of TFA (1 ml) was added and allowed to warm to room temperature. Stirring was continued at

room temperature until the starting material was fully consumed (TLC monitoring). The reaction mixture was evaporated *in vacuo*. The product **9** (as a TFA salt) was obtained in quantitative yield. To get free amine, water (4-5 ml) was added and cooled to 0 $^{\circ}$ C. Then dilute aq.Et₃N was added to the reaction mixture to neutralize excess TFA and

adjusted the pH~ 8. Then the reaction mixture was extracted with EtOAc. The combined organic layers were dried over Na_2SO_4 and evaporated *in vacuo* to yield the crude product **10** in quantitative yield and used for next step.

Synthesis of methyl 3-(4-(3-(pyrene-1-carboxamido)phenyl)-1H-1,2,3-triazol-1-yl)benzoate (2): In a dry round bottom flask, 1-pyrene carboxylic acid (125 mg, 0.5 mmol) dissolved in 6 ml dry DCM was cooled to 0 °C in an ice bath. Reaction mixture was basified with N-methyl imidazole (119 µl, 1.5 mmol) and mesyl chloride (38 µl, 0.5 mmol) was added

under nitrogen atmosphere. After 15 minute, ice bath was removed to attain room temperature. The free amine **10** (132 mg (0.45 mmol) dissolved in 2 ml dry DCM was added to the reaction mixture and refluxed at 50 °C overnight. After consumption of amine the solvent was dried by rotary evaporator and partitioned between EtOAc and aqueous NaHCO₃ solution (20 ml each). The organic layer was washed

with brine solution. Pure product **2** (120 mg, 0.229 mmol) was isolated by column chromatography (Si-gel, PE :EtOAc = 2:1). Yield 54 %. IR (KBr) 3248, 3043, 2952, 2850, 1724, 1655, 1591, 1527, 1248, 1041, 849, 756 cm⁻¹. ¹H NMR (CDCl₃ and d₆-DMSO mix (20%); 400 MHz) δ 3.73 (3H, s); 7.25 (1H, t, *J* = 7.6 Hz); 7.40 (1H, t, *J* = 7.6 Hz); 7.52 (1H, d, *J* = 8 Hz); 7.65 (1H, d, *J* = 8 Hz); 7.82 (1H, d, *J* = 2.8 Hz); 7.85 (3H, m); 7.92 (2H, dd, *J* = 4.4 Hz); 8.02 (4H, ddd, *J* = 8 Hz, 4.4 Hz, 3.2 Hz); 8.33 (2H, d, *J* = 7.6 Hz), 8.39 (1H, d, *J* = 9.6 Hz); 8.57 (1H, s); 10.11 (1H, s); ¹³C NMR (CDCl₃ and d₆-DMSO mix (20%); 100 MHz) δ 52.2, 117.2, 118.8, 119.9, 120.5, 121.1, 124.2, 124.4, 125.2, 125.5, 126.3, 127.1, 128.3, 128.5, 129.2, 130.0, 130.3, 130.7, 131.4, 137.2, 139.8, 147.9, 165.4, 165.6. HRMS calcd for C₃₃H₂₃N₄O₃ ([M + H]⁺) 523.1764, found 523.1742.

3.4. Synthesis of N-(3-(1-(3-((pyren-1-ylmethyl)carbamoyl)phenyl)-1H-1,2,3-triazol-4yl)phenyl)pyrene-1-carboxamide (3): In a dry round bottom flask, starting material 11 (30 mg, 0.059 mmol) in 3 ml dry DMF was cooled to 0 °C in an ice bath and EDC.HCl

(0.088 mmol) and DMAP (0.177 mmol) was added under nitrogen atmosphere. After 15 minute of stirring, pyren-1ylmethanamine was added to the reaction mixture and stirred for half an hour at 0 °C. Then the ice bath was removed and the reaction mixture was stirred for about 18 hour. After completion of the reaction, it was partitioned between EtOAc and aqueous NaHCO₃ solution (10 ml each). The organic layer was washed with brine solution. Pure product **3** (22 mg, 0.03 mmol) was isolated by column

chromatography (Si-gel, CHCl₃ :MeOH = 10 : 1). Yield 52 %. IR (KBr) 3421, 3264, 3042, 2922, 2845, 1724, 1643, 1533, 1482, 1340, 1306, 1036, 845, 709 cm⁻¹.¹H NMR (d₆-DMSO; 600 MHz) δ 5.28 (2H, d, *J* = 6 Hz); 7.52 (1H, t, *J* = 7.8 Hz); 7.77-7.67 (2H, m); 7.83 (1H, d, *J* = 8 Hz); 8.05 (2H, dd, *J* = 15.1 Hz, 7.6); 8.19-8.10 (5H, m); 8.28 (8H, ddd, *J* = 18.9, 14.4, 8.6 Hz); 8.33-8.43 (3H, m); 8.47-8.56 (3H, m); 8.61 (1H, s); 9.37 (1H, s), 9.49 (1H, t, *J* = 5.4 Hz); 10.9 (1H, s); ¹³C NMR (d₆-DMSO; 150 MHz) δ 41.3, 116.9, 119.0, 119.9, 121.2, 122.8, 123.2, 123.7, 123.8, 124.0, 124.1, 124.5, 124.8, 125.2, 125.3, 125.5, 125.8, 126.1, 126.3, 126.7, 126.9, 127.1, 127.3, 127.4, 127.7, 127.9, 128.2, 128.6, 129.6, 130.2, 130.3, 130.8, 130.9, 131.7, 131.9, 132.6, 135.9, 136.7, 140.1, 147.5, 165.2, 167.9. HRMS calcd for C₄₉H₃₂N₅O₂ ([M + H]⁺) 722.2550, found 722.2540.

4. Study of Photophysical Property

4.1.UV-visible & fluorescence measurements method

All the UV –visible spectra of our synthesized compounds (10 µm) were measured in different solvents and different alcohol using UV-Visible spectrophotometer with cell path length 1 cm at 25 °C. All the sample solutions were prepared before an hour for the experiment. Fluorescence spectra were measured using a fluorescence spectrophotometer at 25 °C using 1 cm path length cell .All the sample solutions with same concentration as described in UV measurement experiments. The excitation wavelengths were set at λ^{abs}_{max} . Time resolved fluorescence decays were measured using time resolved fluorescence spectrophotometer. The fluorescence quantum yields (Φ_f) were determined using quinine sulphate as a reference with the known $\Phi_f = 0.54$ in 0.1 molar solution in sulphuric acid.

4.2.*UV-visible and Fluorescence Spectra of* **1**(^{Ar}TAA)

Figure S1. (a)UV-Visible (b)excitation, (c) normalised absorbance and excitation spectra, (d) fluorescence emission spectra of the **TriazolylAromatic Amino Acid Scaffold 1**(^{Ar}**TAA**)in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 280$ nm in each solvent].

Figure S2. (a)UV-Visible (b)excitation, (c) normalised absorbance and excitation spectra, (d) fluorescence emission spectra of the Triazolyl Aromatic Amino Acid Scaffold 1(^{Ar}TAA)in different alcohols [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 280$ nm in each solvent].

4.2.1. Titration of Ethanol in Methanol solvent

Figure S3. (a)UV-Visible (b)excitation and (c)fluorescence emission spectra of $^{Ar}TAA(1)$ in methanol with increasing volume of ethanol. [10 µM, r.t.; $\lambda_{ex} = \lambda_{max} \approx 280$ nm in each solvent].

Figure S4. (a)UV-Visible (b) excitation ($\lambda_{ex} = 330$ nm) and fluorescence emission spectra (c) $\lambda_{ex} = 280$ nm and (d) $\lambda_{ex} = 290$ nm of ^{Ar}TAA (1)in Dioxane with increasing percentage of ethanol [10 µM, r.t.].

Figure S5. (a)UV-Visible (b) excitation ($\lambda_{ex} = 410-430$ nm), (c) normalised absorbance and excitation spectra, and fluorescence emission spectra at (d) $\lambda_{ex} = 280$ nm and (e) at $\lambda_{ex} = 350$ nm of the mono-pyrene derivative of triazolyl aromatic amino acid scaffold **2**, **PyAm-**^{Ar}**TAA** in different alcohol [10 µM, r.t.].

Figure S6. (a)UV-Visible (b) excitation ($\lambda_{ex} = 410-430$ nm) and fluorescence emission spectra (c) $\lambda_{ex} = 280$ nm and (d) $\lambda_{ex} = 350$ nm of the mono-pyrene derivative of triazolyl aromatic amino acid scaffold **2**, **PyAm-**^{Ar}**TAA**in methanol with increasing volume of ethanol.[10 µM, r.t.].

4.4.*UV-visible and Fluorescence Spectra of di-pyrene derivative of our scaffold3 (Py₂Am-*^{Ar}TAA) in Different Alcohol.

Figure S7. (a)UV-Visible (b) excitation ($\lambda_{ex} = 460 \text{ nm}$) and fluorescence emission spectra (c) $\lambda_{ex} = 280 \text{ nm}$ and (d) $\lambda_{ex} = 350 \text{ nm}$ of the di-pyrene derivative of triazolyl aromatic amino acid scaffold **3** (**Py₂Am-^{Ar}TAA**)in different alcohol [10 µM, r.t.].

Figure S8. (a)UV-Visible (b) excitation ($\lambda_{ex} = 460$ nm) and fluorescence emission spectra (c) $\lambda_{ex} = 280$ nm and (d) $\lambda_{ex} = 350$ nm of the di-pyrene derivative of triazolyl aromatic amino acid scaffold **3** (**Py₂Am-^{Ar}TAA**)in methanol with increasing volume of ethanol.[10 µM, r.t.].

5. Photophysical Properties Summary

Entry	Solvents	Relative	UV-Vis & Fluorescence					
		polarity	λ_{max}^{abs}	$\varepsilon_{\rm max} x \ 10^2$	\mathcal{X}_{max}^{fl} (nm)	D_{f}		
			(nm)					
	МеОН	0.762	287	63	305	0.004		
1(^{Ar} TAA)	EtOH	0.654	289	72.7	326	0.07		
	Propanol	0.617	284	69.8	342	0.008		
	Isopropanol	0.546	279	73.8	364	0.005		
	Butanol	0.586	288	82.1	330	0.012		

Table S1:Summary table of photophysical properties of the 1(^{Ar}TAA)

 Table S2:Summary table of photophysical properties of the 2(PyAm-^{Ar}TAA)

Entry	Solvents	Relative	UV-Vis & Fluorescence					
		polarity	λ_{max}^{abs}	$\varepsilon_{\rm max} x \ 10^2$	λ_{max}^{fl} (nm)	D_{f}		
			(nm)					
	MeOH	0.762	275, 341	163	305, 401	0.004		
2	EtOH	0.654	276, 342	180	318, 408, 432	0.030		
(PvAm-								
^{Ar} TAA)	Propanol	0.617	276, 341	178	329, 390, 401	0.01		
- · · · - · · · · · · · · · · · · · · · · · · ·	Isopropanol	0.546	276, 342	179	303, 388, 400	0.009		
	Butanol	0.586	276, 341	187	316, 389, 404	0.01		

Table S3:Summary table of photophysical properties of the 3 (Py₂Am-^{Ar}TAA)

Entry	Solvents	Relative	UV-Vis & Fluorescence					
		polarity	λ^{abs}_{max}	$\varepsilon_{\rm max} x \ 10^2$	λ_{max}^{fl}	${\it P}_{f}$		
			(nm)		(nm)			
	МеОН	0.762	275, 326, 342	109	303, 394, 462	0.06		
3	EtOH	0.654	276, 326, 342	159	316, 395, 461	0.12		
(Py ₂ Am-	Propanol	0.617	276, 327, 343	169	330, 394, 462	0.10		
^{Ar} TAA)	Isopropanol	0.546	276, 327, 343	111	303, 395, 463	0.12		
	Butanol	0.586	276, 327, 342	230	326, 394, 462	0.081		

Entry		% of enhancement intensity from MeOH to EtOH								
	$\lambda_{ex} =$		λ_{em}		$\lambda_{ex}=350$	2	l _{em}			
	280 nm	330 nm	30 nm 430 nm 465 nm		nm	430 nm	460 nm			
1, ^{Ar} TAA		1430								
2, PyAm-		2260	114			386				
^{Ar} TAA										
3, Py ₂ Am-		1173	98	39		104	55			
^{Ar} TAA										
		% of enhar	ncement Φ_{f}	from MeOH	to EtOH					
1, ^{Ar} TAA	$\lambda_{ex} =$	1650			λ _{ex} =350					
2, PyAm-	280 nm	1600	200		nm	250				
^{Ar} TAA										
3 , P y _{2Am-}		925	520	53		60	42			
^{Ar} TAA										

Table S4:Summary table of % of enhancement of intensity and quantum yield from MeOHto EtOH of our compound.

6. Life time table and Trace

Table S5: Summary table of fluorescence lifetimes of the 1 (^{Ar}TAA), 2 (PyAm-^{Ar}TAA) and3 (Py₂Am-^{Ar}TAA)in different alcohol.

Entry	Solvents	Ф	2	τ_{I} [ns]	$\tau_{2}[ns]$	<\u03cm>[k	$k [10^8]$	v^2
Lifti y	Solvents	Ψ_{f}	۸ [nm]	<i>cI</i> [115]	<i>t2</i> [115]	nel	10^{8}c^{-1}	κ_{nr} [10	λ
			[11111]			115]	1^{10}	2]	
				• • • •					
	1	1	<u> </u>	$e_{ex} = 290 \text{ m}$	m	1	1	1	1
	MeOH	0.004	330	3.48		3.48			0.93
				(100%)			0.011	2.86	
	10%	0.005	330	1.14	5.01	3.8			0.95
	EtOH			(31%)	(69%)		0.013	2.61	
1,	50%	0.008	330		6.44	5.39			1.04
ArTAA	EtOH			2.0 (24%)	(75%)		0.014	1.83	
	90%	0.02	330	3.59	8.59	5.92			1.02
	EtOH			(50%)	(50%)		0.033	1.65	
	Only	0.07	330	3.65	8.85	6.21			1.03
	EtOH			(49%)	(51%)		0.112	1.49	
	Dioxane	0.004	330	4 05		4.05			0.94
	210110110	0.001	000	(100%)			0.009	2 36	0.7
	10%	0.006	330	1 84	6.82	4 85	0.007	2.30	1.08
1	FtOH	0.000	550	(42%)	(58%)	7.05	0.012	2.04	1.00
	50%	0.017	330	3.46	814	6 37	0.012	2.04	1.03
	5070 FtOH	0.017	330	(10%)	(60%)	0.57	0.026	1.54	1.05
		0.03	330	3.26	8 85	6.48	0.020	1.57	1.05
	FtOH	0.05	330	(12%)	(58%)	0.40	0.046	1 /0	1.05
	Only	0.07	220	(4270)	(3070)	6.21	0.040	1.47	1.02
	EtOH	0.07	330	(10%)	(51%)	0.21	0.112	1 /0	1.05
	LUII			(4)/0)	(3170)		0.112	1.47	
	MOII	0.001	220	2.72		2 7 2			1.00
	MeOH	0.001	550	3.73		3.75	0.002	2.67	1.00
	100/	0.000	220	(100%)		4.10	0.002	2.67	0.00
	10%	0.002	330	2.25	4.5/	4.13	0.007	0.41	0.98
2	EtOH	0.000	220	(19%)	(81%)	1.77	0.007	2.41	0.00
(PvAm-	50%	0.009	330	2.98	6.15	4.75	0.040	• • •	0.99
ArTAA)	EtOH	0.014		(44%)	(55%)		0.040	2.06	1.00
/	80%	0.014	330	3.22	6.75	5.00			1.00
	EtOH			(49%)	(51%)		0.050	1.94	
	Only	0.017	330	3.38	7.43	5.18			1.04
	EtOH			(55%)	(45%)		0.055	1.87	
	MeOH	0.004	330	1.8	4.08	3.74			0.94
3 (P y ₂				(15%)	(85%)		0.013	2.66	
Am-	10%	0.012	330	2.12	4.6	4.10			0.95
ArTAA)	EtOH			(20%)	(80%)		0.029	2.40	
	50%	0.025	330	3.23	6.21	4.62	0.05	2.11	1.00

	EtOH			(53%)	(46%)						
	80%	0.030	330	3.34	6.8	4.92			1.00		
	EtOH			(54%)	(56%)		0.06	1.97			
	Only	0.041	330	3.39	7.1	4.99			1.02		
	EtOH			(56%)	(44%)		0.082	1.92			
				(0010)	(, . ,	I	0.00				
	MeOH	0.004	430	0.62	4 35	3.22			0.96		
	meon	0.001	150	(30%)	(70%)	5.22	0.015	3.09	0.70		
	10%	0.006	430	0.71	4 36	3 74	0.015	5.07	0.95		
	FtOH	0.000	+30	(16%)	(84%)	5.74	0.018	2 65	0.75		
2	50%	0.009	430	0.76	<u>(0</u> +70) <u>A</u> 72	3.96	0.010	2.05	0.99		
(PyAm-	FtOH	0.007	-50	(19%)	(80%)	5.70	0.025	2 50	0.77		
^{Ar} TAA)	80%	0.010	430	0.97	5.04	3.9/	0.025	2.50	1.02		
	FtOH	0.010	+30	(27%)	(73%)	5.74	0.030	2 50	1.02		
		0.012	/30	0.96	5 25	3 00	0.050	2.30	1.00		
	EtOH	0.012	430	(20%)	(71%)	5.77	0.032	2 47	1.00		
	LIOII			(27/0)	(/1/0)		0.032	2.47			
$M_{0}OH = 0.005 410 1.34 6.74 4.08 1.02$											
	MeOH	0.005	410	1.34	0.74	4.98	0.012	1.00	1.03		
	100/	0.011	410	(33%)	(0/%)	5 29	0.012	1.99	1.00		
	10%	0.011	410	1.38	/.14	5.28	0.020	1.07	1.06		
3		0.021	410	(32%)	(68%)	5.50	0.020	1.87	1.04		
(Pv ₂ Am-	50%	0.021	410	1.31	7.32	5.58	0.027	1 75	1.04		
ÀrTAA)	EtOH	0.024	410	(29%)	(/1%)	6.00	0.037	1.75	1.0.0		
,	80%	0.024	410	1.37	7.94	6.29	0.020	1.7.5	1.06		
	EtOH	0.001	110	(25%)	(75%)		0.038	1.55	1.07		
	Only	0.031	410	1.36	8.03	6.53	0.067	1.40	1.05		
	EtOH			(22%)	(78%)		0.067	1.48			
	1	1	1	T	1	1	1	1			
	MeOH	0.045	475	2.99	12.56	7.48			1.01		
				(53%)	(47%)		0.060	1.27			
	10%	0.060	475	2.97	12.73	7.48			1.00		
3	EtOH			(54%)	(46%)		0.080	1.25			
(PvaAm-	50%	0.062	475	3.05	12.74	7.49			1.02		
$\frac{\mathbf{A}\mathbf{Y}_{2}\mathbf{A}\mathbf{M}}{\mathbf{A}\mathbf{r}}$	EtOH			(54%)	(46%)		0.082	1.25			
IAA)	80%	0.064	475	3.12	12.93	8.24			1.00		
	EtOH			(47%)	(53%)		0.077	1.13			
	Only	0.069	475	3.09	13.30	8.03			0.99		
	EtOH			(52%)	(48%)		0.085	1.15			
				$\lambda_{\rm ex} = 37$	75						
	MeOH	0.008	430	0.78	4.51	3.24			0.98		
				(34%)	(66 %)		0.024	3.06			
	10%	0.015	430	1 17	4 09	2.34	1		0.98		
2	EtOH	0.010		(59%)	(40%)		0.042	4 23			
(PvAm-	50%		430	1 30	4 22	1 98	0.0-12	1.23	0.96		
ArTAA)	EtOH	0.015	730	(79%)	(21%)	1.70	0.075	4 97	0.70		
	80%		430	11	35	1 71	0.075	т.71	0.03		
	FtOH	0.022	+30	(85%)	(15%)	1./1	0 1 2 2	5 72	0.75		
		0.028	/30	1 /2	3 75	1 60	0.122	5.72	0.07		
1	Ully	0.020	+30	1.40	5.15	1.07	0.413	5.70	0.27		

	EtOH			(89%)	(11%)				
	•				<u> </u>	•		•	
	MeOH	0.005	410	1.23	6.69	5.25			1.05
				(26%)	(73%)		0.001	1.89	
	10%	0.006	410	1.24	6.64	4.82			1.02
2	EtOH			(34%)	(66%)		0.012	2.06	
5 (Py ₂ Am- ^{Ar} TAA)	50%	0.006	410	1.31	6.61	3.97			1.01
	EtOH			(52%)	(48%)		0.015	2.50	
	80%	0.007	410	1.34	6.14	3.25			1.02
	EtOH			(60%)	(40%)		0.020	2.96	
	Only	0.008	410	1.37	6.04	3.12			1.02
	EtOH			(63%)	(37%)		0.025	3.17	
	MeOH	0.073	475	3.45	15.87	9.67			1.08
				(50%)	(50%)		0.08	0.953	
	10%	0.079	475	3.32	15.70	9.68			1.06
2	EtOH			(49%)	(51%)		0.081	0.951	
J (Dy Am	50%	0.083	475	3.27	15.51	9.54			1.04
$(\mathbf{F}\mathbf{y}_2\mathbf{A}\mathbf{I}\mathbf{I}\mathbf{F}$	EtOH			(49%)	(51%)		0.087	0.961	
IAA)	80%	0.103	475	3.07	14.81	9.06			1.05
	EtOH			(49%)	(51%)		0.113	0.99	
	Only	0.104	475	2.79	13.74	8.50			1.00
	EtOH			(48%)	(52%)		0.164	1.011	
For lifetim	es of the mo	plecules λ_e	x = 290 nr	n for 1 , 2 , 3	and $\lambda_{ex} =$	375 for	2,3.Con	centration	of the
compound	$= 10 \ \mu M;$	<\approx >, k_f,	and k _{nr} a	re weighted	means fr	rom the	biexpoi	nential fit	s: <\appa >
$=1/(\alpha_1/\tau_1+$	α_2/τ_2), $k_f = 0$	$\Phi_f/<\tau>$, ar	$hd k_{nr} = (1 + 1)$	- Φ_f)/< τ >.					

Figure S9. Time resolved fluorescence spectra of **1**, ^{Ar}**TAA**using 290 LED in (a) Methanol with increasing ethanol conc. ($\lambda_{em} = 330 \text{ nm}$); (b) Dioxane with increasing ethanol conc. ($\lambda_{em} = 330 \text{ nm}$).

Figure S10. Time resolved fluorescence spectra of **2** (**PyAm**-^{**Ar**}**TAA**)using 290 LED in methanol with increasing ethanol conc. (a) $\lambda_{em} = 330$ nm, (b) $\lambda_{em} = 430$ nm,(c) $\lambda_{ex} = 375$ nm, $\lambda_{em} = 430$ nm).

Figure S11. Time resolved fluorescence spectra of **3** (**Py**₂**Am**-^{**Ar**}**TAA**)using 290 LED in in methanol with increasing ethanol conc. (a) $\lambda_{em} = 330$ nm, (b) $\lambda_{em} = 410$ nm and (c) $\lambda_{em} = 460$ nm.

Figure S12. Time resolved fluorescence spectra of **3** (**Py**₂**Am**-^{**Ar**}**TAA**)using 375 Laser inmethanol with increasing ethanol conc. (a) $\lambda_{em} = 410$ nm and (b) $\lambda_{em} = 460$ nm.

7. Picture of 1 (^{Ar}TAA), 2 (PyAm-^{Ar}TAA) and3 (Py₂Am-^{Ar}TAA) under Fluorescence light in MeOH and with increasing volume of EtOH solvent.

Figure S13. Picture under fluorescence light ($\lambda_{ex} = 280 \text{ nm}$) of ArTAA,1in(a) MeOH (b) 10% EtOH in MeOH (c) 50% EtOH in MeOH (d) EtOHsolvents.

Figure S14. Picture under fluorescence light ($\lambda_{ex} = 280 \text{ nm}$) of **PyAm-^{Ar}TAA,2**in (a) MeOH (b) 10% EtOH in MeOH (c) 50% EtOH in MeOH (d) EtOHsolvents.

Figure S15. Picture under fluorescence light ($\lambda_{ex} = 350 \text{ nm}$) of **PyAm-**^{Ar}**TAA**,2in (a) MeOH (b) 10% EtOH in MeOH (c) 50% EtOH in MeOH (d) EtOHsolvents.

Figure S16. Picture under fluorescence light ($\lambda_{ex} = 280 \text{ nm}$) of 3 (Py₂Am-^{Ar}TAA)in (a) MeOH (b) 10% EtOH in MeOH (c) 50% EtOH in MeOH (d) EtOHsolvents.

Figure S17. Picture under fluorescence light ($\lambda_{ex} = 350 \text{ nm}$) of **3** (**Py**₂**Am**-^{Ar}**TAA**)in (**a**) MeOH (**b**) 10% EtOH in MeOH (**c**) 50% EtOH in MeOH (**d**) EtOHsolvents.

Table S6. A comparative study table of other probes reported in the literature for Ethanol-MeOH detection.

Journal	Probe used	Observation	Detection limit
Present	Aromatic triazolo small molecular	Turn on	0.243 (M)
manuscript	scaffold	fluorescence in	
		Ethanol	
Sens. Actuators	Triphenylamine-based fluorescent	Strong	~ 0.7%
B Chem. 2017, 245,	D-π-A system.	fluorescence in	(volume
406.		methanol.	concentration)
ACS Appl.	Terphenyl-ol (TPhOH) derivatives	Solid state sky	~ 5 v/v %
Mater. Interfaces	and sodium carbonate mixture.	blue fluorescence on	ethanol
2015, 7, 6189.		exposed to ethanol	
		vapour.	
Mater. Lett.	Flower-like SnO ₂ aggregative	Selective gas	500 ppm
2015, 159 , 5.	nanosheets.	diffusion to ethanol.	ethanol at 300°C.
Anal. Chem.	Ditrihexyl(tetradecyl)phosphoniu	Colorimetric	
2015, 87 , 4464	m bromothymol blue ($[P_{66614}]_2[BTB]$).	sensors of ethanol -	
		methanol mixture.	
ACS Appl.	A composite film prepared from	Color change	
Mater. Interfaces	oxoporphyrinogen (OxP)	magenta to purple in	
2013, 5 , 5927	and a layered double hydroxide	presence of methanol.	
	(LDH)		
ACS Appl.	α -Fe ₂ O ₃ hierarchical	Ethanol gas	100 ppm
Mater. Interfaces	nanostructures.	sensor.	ethanol at 280°C.
2011, 3 , 4689			
Chem.	Comb-like Cu ₂ O	Interface	
<i>Commun.</i> , 2010, 46 ,	nanorod.	etching	
7022.		approach to detect	
		ethanol.	
J. Am. Chem.	Hydroxyethyl methacrylate -	Sensitive sensor	
Soc. 2008, 130, 3113	polymerized crystalline colloidal array.	of ethanol.	

8. Ethanol Vapor Sensing

For ethanol sensing purpose we have coated the glass plate by our compound through spin coating method. Then dry it and put on the mouth of glass vial containing methanol, ethanol and mixture of both. After 5 minute interval of each sample we have measured the solid state fluorescence.

Figure S18. (a) Excitation ($\lambda_{ex} = 390 \text{ nm}$) and fluorescence emission spectra (b) $\lambda_{ex} = 280 \text{ nm}$ of the TriazolylAromatic Amino Acid Scaffold 1, ^{Ar}TAAin presence of methanol vapour with increasing percentage of ethanol vapour (room temperature).

Figure S19. Plot of relative change of the fluorescence intensity, % ΔI with ethanol vapour pressure, P_{EtOH} ($\lambda_{em} = 390$ nm) of **1**, ^{Ar}**TAA**at room temperature.

Figure S20. (a) Excitation ($\lambda_{ex} = 480 \text{ nm}$), fluorescence emission spectra(b) $\lambda_{ex} = 280 \text{ nm}$ and (c) $\lambda_{ex} = 350 \text{ nm}$ 2 (**PyAm-**^{Ar}**TAA**)in presence of methanol vapour with increasing percentage of ethanol vapour at room temperature.

Figure S21. Plot of relative change of the fluorescence intensity, % ΔI with ethanol vapour pressure, P_{EtOH} (a) $\lambda_{em} = 370$ nm (b) $\lambda_{em} = 470$ nm of **2** (**PyAm-**^{Ar}**TAA**) in presence of methanol vapour with increasing percentage of ethanol vapour at room temperature.

Figure S22. (a) Excitation ($\lambda_{ex} = 470$ nm), fluorescence emission spectra (b) $\lambda_{ex} = 280$ nm and (c) $\lambda_{ex} = 370$ nm (d) relative change of the fluorescence intensity, % ΔI with ethanol vapour pressure, P_{EtOH} ($\lambda_{em} = 470$ nm) of **3** (**Py**₂**Am**-^{**Ar**}**TAA**)in presence of methanol vapour with increasing percentage of ethanol vapour at room temperature.

9. Determination of the Detection Limit

The limit of detection (LoD) has been calculated using the equation $3\sigma/K$, where σ denotes the standard deviation of fluorescence intensity in MeOH solvent and K represents slope of plotting Intensity Vs concentration of added EtOH of methanol-ethanol titration experiment.

					. .							
scaffe	old an	d pyrene d	lerivative:									
Table	e S7.	Standard	deviation	and	detection	lımıt	of	ethanol	sensing	by	our	synthesized

Dopotition	Fluorescence Intensity								
Repetition	ArTAA	Py ₁ Amide_ArTAA	Py ₂ Amide_ ^{Ar} TAA						
1	46911	29863	50845						
2	47804	28919	44078						
3	46795	31188	47744						
4	50082	29099	47118						
5	47083	32703	46408						
6	49884	30220	50117						
7	48355	29864	47808						
8	48774	28864	49281						
Average	48222	30090	47925						
STDEV	1213	1225	2030						
slope	14942.522	43440.63	53904.64						
LoD	0.243 (M)	0.084 (M)	0.112 (M)						

Figure S23. Plot of fluorescence intensity vs concentration of EtOH in MeOH of MeOH-EtOH titration for (a) ^{Ar}TAA (1), (b) Py-Amide ^{Ar}TAA (2), (c) Py₂.Amide ^{Ar}TAA (3).

10. Study of IR Spectroscopy

The differential H-bonding interaction was evident from IR spectra that showed the major differential perturbation and a noticeable change occurred at ester carbonyl and triazole-N=N stretching frequency, respectively. As a representative example, the ester carbonyl of scaffold 8 in solid KBr exhibited stretching frequency at 1719 cm⁻¹ and triazole-N=N stretching appeared at 1441/1459 cm⁻¹ while theamide Istretching was not observed. However, the sample when soaked with methanol, ethanol or a mixed solvent and recorded the IR we found nice differential stretching frequencies of all the above functional groups. Thus, while ester >C=O absorb at 1713 cm⁻¹ along with the appearance of amide-I band at 1667 cm⁻¹ in methanol, the scaffold behaved similar to the solid state in ethanol with a stretching frequency at 1716 cm⁻¹ corresponding to ester>C=O. The triazole-N=N-stretching also in ethanol (1436/1458 cm⁻¹) was more correlating to a solid state compared to that observed in methanol (1418/1450 cm⁻¹). Soaking with a mixed ethanol:methanol (1:1) solvent, the ester >C=O stretching, triazole-N=N-stetching appeared at 1715 cm⁻¹ and 1434/1452 cm⁻¹, respectively, along with appearance of amide-I at 1699 cm⁻¹. Similar observations were noted in case of scaffold. Therefore, it is clear that interactions such as H-bonding in methanol and ethanol are very much different and is more in methanol compared to ethanol.

Whereas, scaffold **1**exhibited acid carbonyl stretching frequency at 1702 cm⁻¹with amide-I band at 1687 cm⁻¹ and triazole-N=N stretching appeared at 1440/1463 cm⁻¹ in solid KBr. when the sample soaked with methanol acid>C=O absorb at 1699 cm⁻¹and amide-I band at 1668 cm⁻¹. Butwhenscaffold soaked in ethanol acid>C=O absorb at 1700 cm⁻¹with amide-I band at 1674 cm⁻¹. The triazole-N=N-stretching also in ethanol (1430/1454 cm⁻¹) was more correlating to a solid state compared to that observed in methanol (1406/1445 cm⁻¹).

Figure S24. (a)IR spectra and (b) FSD traces of 8, ^{Ar}TAAat dry and solid condition.

Figure S25. (a)IR spectra and (b) FSD traces of 8, ^{Ar}TAAsoakedin methanol.

Thu Apr 21 12:11:02 2016 (GMT+05:30)

Figure S26. (a)IR spectra and (b) FSD traces of 8, ^{Ar}TAAsoakedin ethanol and methanol (1:1) mixture.

Thu Apr 21 12:17:46 2016 (GMT+05:30)

Figure S27. (a)IR spectra and (b) FSD traces of 8, ^{Ar}TAAsoakedin ethanol.

Thu Apr 21 12:23:36 2016 (GMT+05:30)

.

Figure S28. (a)IR spectra and (b) FSD traces of 1, ^{Ar}TAAat dry and solid condition.

Fri Apr 15 11:55:04 2016 (GMT+05:30)

Fri Apr 15 12:50:24 2016 (GMT+05:30)

Thu Apr 21 12:31:08 2016 (GMT+05:30)

Figure S30. (a)IR spectra and (b) FSD traces of 1, ^{Ar}TAAsoaked in ethanol and methanol (1:1) mixture.

Figure S31. (a)IR spectra and (b) FSD traces of 1, ^{Ar}TAAsoaked in ethanol.

11.Study of Circular Dichroism Spectroscopy

Circular dichroism spectra were recorded using a CD spectropolarimeter with a cell path length of 10 mm at 25 $^{\circ}$ C. All the samples were prepared in spectroscopic grade solvent with 100 μ M concentration.

Figure S32. Deconvoluted molar ellipticity of synthesized amino acids scaffolds 1, ^{Ar}TAA (a);2 (PyAm-^{Ar}TAA) (b) and 3, Py₂Am.^{Ar}TAA (c) in methanol and increasing volume of EtOH solvent (100 μ M concentration).

12.Optimized Structure Using Maestro vs. 9.1

12.1. Optimization Structure of of Scaffold 8 with four MeOH/EtOH solvent molecule and Conformational Search of Optimized Structures

We are using Schrodinger Macromodel(Maestro vs. 9.1) software with Amber* force field in MeOH/EtOH (putiing their corresponding dielectric constant). A conjugate gradient minimization scheme [PRCG (Polak-Ribiere Conjugate Gradient)] that uses the Polak-Ribierefirst derivative method with restarts every 3N iterations was employed for the minimization of the peptides.

Next, we carried out conformational search using Amber* force field at respective dielectric in MeOH/EtOH with "large scale low-frequency-mode conformational search" (Mixed torsional/Large scale low-mode sampling = MCMM/LMCS) method. A total of 500 structures were processed with 500 maximum no. of steps iteration. A global search analysis eliminates redundant conformers using RMS deviation for all compared atoms exceed the threshold Cutoff of 0.5 Å. An optimal minimization method was chosen for minimizing the generating conformers.

Figure S33. The conformer, obtained after conformational search, with 1.00 k.cal/mole (4.18 kJ/mole) global minimum. (a) ^{Ar}TAA with four **MeOH** solvent molecule(b) scaffold **8** with four**EtOH**solvent molecule.

13. Optimized Structure Using Gaussian 09

The ground state structures of ^{Ar}TAA with four MeOH/EtOH solvent molecule and $Py_2^{Ar}TAA$ were optimized using Gaussian 09 programme at B3LYP/6-31G level of theory with CPCM solvent model. The energy minimized geometry of the scaffold revealed that the aminophenyl unit remained almost in plane with triazole ring in both Methanol and ethanol solvent. However, the benzoic acid unit attained more out-of-planarity (33°) in ethanol compared to that in methanol (20°) with differential hydrogen bonding pattern. However, in case of $Py_2^{Ar}TAA$ sensortwo pyrene moiety come closer in ethanol solvent compare to methanol where two fluorophoric unit are outward.

Figure S34.B3LYP/6-31G Optimized Structure of (a) **8**, ^{Ar}**TAA-MeOH** in MeOH solvent (b) **8**, ^{Ar}**TAA-EtOH** in EtOH solvent.

Figure S35.B3LYP/6-31G Optimized Structure of (a) $Py_2^{Ar}TAA$ in MeOH solvent (b) $Py_2^{Ar}TAA$ in EtOH solvent.

13.1. Cartesian Coordinates

B3LYP/6-31G Energy Optimized geometry and energy of**8**, ^{Ar}TAA-MeOHcomplex in MeOH solvent.

E(RB+HF-LYP)= -1796.20993340 a. u.

Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	5.168432	-1.246187	-0.017561
2	6	0	4.063152	0.849193	0.434529
3	6	0	4.030201	-0.437911	-0.092424
4	1	0	3.132156	-0.822801	-0.557416
5	6	0	6.346548	-0.748518	0.555566

6	1	0	7.230177	-1.373457	0.608091
7	6	0	5.229428	1.354779	1.018278
8	1	0	5.238239	2.357421	1.428574
9	6	0	6.367682	0.550079	1.065035
10	1	0	7.275199	0.938729	1.515797
11	6	0	-0.591257	2.616036	0.040057
12	6	0	-1.444545	1.501353	-0.020149
13	1	0	-1.050779	0.499358	0.074611
14	6	0	-2.822204	1.677308	-0.199253
15	6	0	-1.120642	3.911061	-0.069624
16	1	0	-0.468897	4.776430	-0.015655
17	6	0	-2.493504	4.077081	-0.249251
18	1	0	-2.908131	5.077190	-0.338539
19	6	0	-3.343152	2.978025	-0.318063
20	1	0	-4.410993	3.118348	-0.461775
21	6	0	5.062114	-2.631656	-0.557257
22	6	0	6.216243	-4.629340	-1.070414
23	1	0	5.873597	-4.650799	-2.107107
24	1	0	5.558248	-5.244247	-0.452695
25	1	0	7.246376	-4.974962	-0.998498
2.6	6	0	-3.538518	-0.712468	-0.087160
27	6	0	-4.834728	-2.838319	-0.077188
28	6	0	-6.284964	-3.095843	-0.493874
29	1	0	-6.978135	-2.522059	0.130566
30	1	0	-6.520655	-4.158072	-0.376100
31	1	0	-6.443271	-2.823363	-1.542669
32	6	0	-4.634587	-3.164275	1.404879
33	1	0	-5.338987	-2.590928	2.017373
34	- 1	0	-3.619634	-2.948272	1.743469
35	1	0	-4.832702	-4.228985	1.569323
36	-	0	-3.873203	-3.597889	-0.995119
37	1	0	-4.105988	-4.667116	-0.948420
38	1	0	-2 833406	-3 453303	-0 700786
39	1	0	-3.997894	-3.269221	-2.032561
40	÷ 8	0	-4 703228	-1 373831	-0 283440
41	8	0	6 235351	-3 271454	-0 580496
42	8	0	4 017930	-3 145877	-0 941191
43	8	0	-2 465297	-1 235265	0 209196
44	6	0	0 856643	2 415292	0 202278
45	6	0	1 595845	1 246069	0.202270
46	1	0	1 323257	0 205287	0 108602
40	- 7	0	2 884549	1 648716	0.100002
48	7	0	-3 748494	0 620281	-0 285120
<u>10</u> Д Q	1	0	-4 717914	0.880675	-0 497973
	± 7	0	2 957332	2 995213	0.470442
51	7	0	1 740508	3 452205	0.367528
52	, R	0	1 310800	-2 152779	-0 672485
52 53	1	0	2 17/100	-2 607576	-0 7/2403
53 54	± 8	0	-1 328358	-2 299723	2 595895
55	1	0	-1 695041	-1 876206	1 796567
55 56	×	0	-6 579027	0 840321	-0 848653
50	0	0	0.019021	0.010321	0.010000

57	7 1	0	-6.477433	-0.127074	-0.834279
58	8 8	0	1.426623	6.327939	0.198545
59	9 1	0	1.578637	5.366217	0.330562
60) 6	0	-7.401324	1.208776	0.263821
61	L 1	0	-7.475338	2.298506	0.256491
62	2 1	0	-8.409282	0.785803	0.171798
63	3 1	0	-6.965221	0.889972	1.219257
64	1 6	0	-0.581284	-3.431861	2.161913
65	5 1	0	-0.061870	-3.836096	3.036867
66	5 1	0	-1.227178	-4.225464	1.755178
67	7 1	0	0.164732	-3.167670	1.400790
68	3 6	0	0.595572	-2.352878	-1.890235
69	9 1	0	0.427226	-3.419002	-2.095031
7() 1	0	-0.375393	-1.864975	-1.774637
71	L 1	0	1.113685	-1.907898	-2.750973
72	2 6	0	1.853188	6.638012	-1.120096
73	3 1	0	1.652969	7.700331	-1.292404
74	1 1	0	2.931193	6.467250	-1.262685
75	5 1	0	1.311197	6.060950	-1.884355

8, ArTAA-EtOH complex in EtOH Solvent

E(RB+HF-LYP)= -1953.48929795 a. u.

Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	5.285885	-0.594697	0.485807
2	6	0	3.813063	1.311738	0.526899
3	6	0	4.066095	-0.001141	0.136336
4	1	0	3.343701	-0.554520	-0.453238

5	6	0	6.247307	0.136947	1.196781
6	1	0	7.190428	-0.326205	1.460781
7	6	0	4.766156	2.050803	1.235493
8	1	0	4.545107	3.069954	1.530308
9	6	0	5.985589	1.458049	1.557384
10	1	0	6.728851	2.027306	2.106202
11	6	0	-0.975296	2.334306	-0.438034
12	6	0	-1.686938	1.145762	-0.204161
13	1	0	-1.174257	0.270695	0.165973
14	6	0	-3.065626	1.090103	-0.437114
15	6	0	-1.652037	3.478644	-0.886886
16	1	0	-1.109935	4.400762	-1.068040
17	6	0	-3.029119	3.419734	-1.100729
18	1	0	-3.558444	4.302943	-1.447189
19	6	0	-3.736909	2.241511	-0.885571
20	1	0	-4.807560	2.202260	-1.066471
21	6	0	5.521259	-2.008771	0.077748
22	6	0	6.981353	-3.863852	0.192218
23	1	0	7.036746	-3.970803	-0.893150
24	1	0	6.217492	-4.535626	0.589556
25	6	0	-3.447531	-1.346999	-0.037088
26	6	0	-4.437181	-3.606536	0.238338
27	6	0	-5.904620	-4.041505	0.232211
28	1	0	-6.457942	-3.556700	1.043522
29	1	0	-5.971226	-5.124936	0.372196
30	1	0	-6.381328	-3.789212	-0.721081
31	6	0	-3.789432	-3.909730	1.591889
32	1	0	-4.329814	-3.399535	2.396460
33	1	0	-2.744054	-3.597793	1.613552
34	1	0	-3.835014	-4.987467	1.781593
35	6	0	-3.683463	-4.238710	-0.935038
36	1	0	-3.736220	-5.329504	-0.851215
37	1	0	-2.634316	-3.940063	-0.944369
38	1	0	-4.144685	-3.948294	-1.885099
39	8	0	-4.540869	-2.140381	0.046176
40	8	0	6.674506	-2.497789	0.544029
41	8	0	4.747517	-2.672672	-0.601954
42	8	0	-2.287052	-1.738747	0.047637
4.3	6	0	0.477254	2.361521	-0.210369
44	6	0	1.338354	1.327198	0.114848
45	1	0	1,174353	0.271985	0.301895
46	7	0	2.560929	1.912656	0.206607
47	7	0	-3.853766	-0.058477	-0.229659
48	1	0	-4.868644	0.067711	-0.310850
49	- 7	0	2 482042	3 240103	-0 047396
50	7	0	1,229654	3.505253	-0.296361
51	, 8	0 0	2.836962	-1.855738	-2.584180
52	1	0 0	3 51 32 34	-2.165710	-1.951130
53	- 8	0 0	0.481743	-1.765462	0.597931
54	1	0 0	-0.443968	-1.777606	0.286679
55	- 8	0	-6.743306	-0.118763	-0.441712
		-		· · · •	

56	1	0	-6.648955	-1.069855	-0.260408
57	8	0	0.525412	6.228126	-1.004975
58	1	0	0.831001	5.321691	-0.778080
59	6	0	-7.633049	0.438423	0.540530
60	1	0	-7.718010	1.497747	0.281365
61	1	0	-8.628987	-0.011495	0.429462
62	6	0	0.511662	-2.418555	1.871164
63	1	0	-0.126806	-1.885552	2.591252
64	1	0	0.118357	-3.441765	1.778765
65	6	0	1.788522	-2.827635	-2.587593
66	1	0	1.343664	-2.916923	-1.586532
67	1	0	1.013513	-2.428184	-3.252169
68	6	0	0.299052	6.920378	0.219615
69	1	0	-0.408355	6.367058	0.857680
70	1	0	1.236683	7.021042	0.790198
71	6	0	1.946268	-2.457169	2.370317
72	1	0	2.590989	-2.975790	1.652206
73	1	0	2.337295	-1.443667	2.511416
74	1	0	2.001150	-2.983375	3.329584
75	6	0	2.256824	-4.190637	-3.090281
76	1	0	3.030440	-4.603379	-2.431182
77	1	0	1.423391	-4.903011	-3.119721
78	1	0	2.676857	-4.107634	-4.099055
79	6	0	-7.125432	0.271781	1.967228
80	1	0	-7.824991	0.731416	2.674837
81	1	0	-7.030088	-0.788481	2.230585
82	1	0	-6.146721	0.747259	2.092708
83	1	0	7.948465	-4.067405	0.649463
84	6	0	-0.260731	8.299026	-0.095835
85	1	0	-1.210439	8.215555	-0.636169
86	1	0	-0.435552	8.865638	0.825483
87	1	0	0.439612	8.864207	-0.721157

3, (Py₂Am-^{Ar}TAA)in MeOH Solvent

E(RB+HF-LYP)= -2310.1037 a.u.

Number	Number Type	X Y	Z		
1	6	0	-3.402505	1.647456	0.560972
2	6	0	-1.755463	3.410592	0.434451
3	6	0	-2.138379	2.098317	0.165048
4	1	0	-1.482597	1.414935	-0.362116
5	6	0	-4.288994	2.535439	1.184155
6	1	0	-5.292311	2.220875	1.453988
7	6	0	-2.631470	4.298068	1.069414
8	1	0	-2.315812	5.314788	1.270745
9	6	0	-3.901832	3.854338	1.428054
10	1	0	-4.593321	4.541043	1.905933
11	6	0	3.076030	3.923178	-0.732818
12	6	0	3.669980	2.653059	-0.660628
13	1	0	3.086417	1.778033	-0.413581
14	6	0	5.038637	2.502663	-0.918574
15	6	0	3.854705	5.041188	-1.067714
16	1	0	3.391470	6.019869	-1.122724
17	6	0	5.215185	4.883306	-1.326434
18	1	0	5.820363	5.747008	-1.586408
19	6	0	5.811138	3.627853	-1.253831
20	1	0	6.873017	3.514301	-1.456673
21	6	0	-3.749128	0.217526	0.236692
22	6	0	-5.152932	-1.738073	0.805866
23	1	0	-4.341579	-2.266242	0.302143
24	1	0	-5.293921	-2.206408	1.783059
25	6	0	5.203321	0.008277	-0.611877
26	8	0	-3.186588	-0.379172	-0.687302
27	8	0	4.004776	-0.224103	-0.448712
28	6	0	1.641587	4.085540	-0.457854
29	6	0	0.696757	3.158838	-0.054970
30	1	0	0.756839	2.108917	0.180984
31	7	0	-0.459413	3.863609	0.054524
32	7	0	5.709504	1.262641	-0.853844
33	1	0	6.698239	1.304543	-1.067111
34	7	0	-0.250404	5.168129	-0.265678
35	7	0	1.008408	5.297477	-0.570290
36	6	0	6.217385	-1.104019	-0.634924
37	6	0	5.861949	-2.226811	-1.395431
38	6	0	7.451238	-1.083297	0.064267
39	6	0	6.723409	-3.304893	-1.541171
40	1	0	4.896957	-2.231526	-1.892054
41	6	0	8.341250	-2.198667	-0.084330
42	6	0	7.845650	-0.023692	0.959233
4.3	6	0	7.976148	-3.309629	-0.906287
44	1	0	6.434291	-4.152950	-2.155930
4.5	6	0	9.600873	-2.210449	0.591201
46	6	0	9.043988	-0.043773	1.607244
47	1	0	7.162841	0.798952	1.139008

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

4	18	6	0	8.895325	-4.404468	-1.052737
4	19	6	0	10.497045	-3.312115	0.424971
ц. С	50	6	0	9.973105	-1.123621	1.438656
L,	51	1	0	9.310225	0.767591	2.279775
ц. С	52	6	0	10.101310	-4.404476	-0.420382
L,	53	1	0	8.603751	-5.239234	-1.684676
Ľ,	54	6	0	11.733461	-3.295638	1.092108
5	55	6	0	11.217912	-1.151450	2.089442
L	56	1	0	10.787016	-5.239010	-0.542312
L .	57	6	0	12.088212	-2.226241	1.913876
L .	58	1	0	12.415148	-4.132031	0.961126
5	59	1	0	11.496052	-0.322623	2.735252
6	50	1	0	13.047981	-2.232251	2.422522
e	51	6	0	-6.410898	-1.821399	-0.042799
e	52	6	0	-7.705182	-1.659703	0.508737
e	53	6	0	-6.273478	-2.046463	-1.417312
e	54	6	0	-8.847024	-1.737181	-0.354050
e	65	6	0	-7.937927	-1.418448	1.910002
e	56	6	0	-7.377103	-2.121443	-2.261381
e	57	1	0	-5.274740	-2.159462	-1.829842
e	58	6	0	-10.165269	-1.581213	0.176400
e	59	6	0	-8.676275	-1.971479	-1.753892
7	70	6	0	-9.194984	-1.268410	2.413968
7	71	1	0	-7.092919	-1.355099	2.587596
7	72	1	0	-7.237742	-2.300289	-3.324478
7	73	6	0	-10.354905	-1.343242	1.571799
7	74	6	0	-11.303218	-1.661197	-0.686260
7	75	6	0	-9.838670	-2.047178	-2.597076
7	76	1	0	-9.338257	-1.087988	3.476387
7	77	6	0	-11.658781	-1.192626	2.073794
7	78	6	0	-12.588007	-1.504717	-0.139984
7	79	6	0	-11.092970	-1.899611	-2.088497
8	30	1	0	-9.692173	-2.226644	-3.659205
8	31	6	0	-12.761323	-1.273380	1.224601
8	32	1	0	-11.799469	-1.011947	3.136442
8	33	1	0	-13.452300	-1.565854	-0.796432
8	34	1	0	-11.962196	-1.959516	-2.738591
8	35	1	0	-13.762966	-1.154916	1.628281
8	36	7	0	-4.686026	-0.367139	1.027170
8	37	1	0	-5.061585	0.146521	1.811398

3, (Py₂Am-^{Ar}TAA)in EtOH Solvent

E(RB+HF-LYP)= -2310.1045 a.u.

Center	Atomic Atomic	Coordinates (A	angstroms)		
Number	NumberType	X Y	Z		
1	6	0	-3.685772	2.591249	0.672768
2	6	0	-2.003187	4.136247	-0.117603
3	6	0	-2.341398	2.955940	0.540758
4	1	0	-1.583507	2.309751	0.968170
5	6	0	-4.680644	3.417663	0.133549
6	1	0	-5.727918	3.136736	0.185533
7	6	0	-2.992795	4.969990	-0.649512
8	1	0	-2.710930	5.880133	-1.165422
9	6	0	-4.329580	4.601782	-0.517195
10	1	0	-5.102837	5.234495	-0.941272
11	6	0	2.962882	4.288326	-0.624573
12	6	0	3.424304	2.962613	-0.613907
13	1	0	2.741025	2.135546	-0.488331
14	6	0	4.789634	2.692186	-0.769918
15	6	0	3.872436	5.343771	-0.787831
16	1	0	3.511443	6.366157	-0.796749
17	6	0	5.230436	5.067388	-0.939857
18	1	0	5.937335	5.882349	-1.066273
19	6	0	5.694481	3.755326	-0.932847
20	1	0	6.755423	3.550265	-1.051905
21	6	0	-3.966574	1.295263	1.388792
22	6	0	-5.605413	-0.074313	2.624366
23	1	0	-4.743410	-0.405804	3.208143
24	1	0	-6.391615	0.206329	3.329566
25	6	0	4.683219	0.180146	-0.634401
26	8	0	-3.091980	0.430627	1.503353
27	8	0	3.462714	0.069065	-0.509598
28	6	0	1.528532	4.568423	-0.472319

29	6	0	0.458251	3.699809	-0.356306
30	1	0	0.385261	2.624566	-0.366690
31	7	0	-0.633319	4.501725	-0.256548
32	7	0	5.326317	1.386603	-0.773997
33	1	0	6.320752	1.337766	-0.956256
34	7	0	-0.265824	5.809726	-0.305427
35	7	0	1.029070	5.845584	-0.436079
36	6	0	5.567810	-1.034312	-0.727035
37	6	0	5.087750	-2.058869	-1.555261
38	6	0	6.795568	-1.199347	-0.035679
39	6	0	5.819679	-3.216799	-1.774477
40	1	0	4.129096	-1.921351	-2.044853
41	6	0	7.552691	-2.396958	-0.261936
42	6	0	7.308123	-0.252752	0.923800
4.3	6	0	7.063343	-3.404637	-1.149821
44	1	0	5.435659	-3.985526	-2.439531
45	÷ 6	0	8 803220	-2 595602	0 401550
46	6	0	8 497125	-0 450659	1 559319
47	1	0	6 722810	0.627572	1 164020
48	£	0	7 850828	-4 585695	-1 372086
<u>чо</u> ла	6	0	9 567686	-3 7791/3	0 158379
49 50	6	0	9.307000	-1 615078	1 313562
51	1	0	9.297711	0 270471	2 201316
52	I 6	0	0.033730	-4 763549	-0 750707
JZ 52	1	0	7 161970	-4.703349 5.220674	2 052075
50	I G	0	10 709704	-3.339074	-2.033073
J4 55	6	0	10.798704	-3.943077	1 050000
56	0	0	10.552074	-1.02J020 5.661221	1.950000
50	I E	0	9.033330	-3.001331	-0.930219
57 E0	6	0	11.2/4146	-2.9/8654	1.699670
50	1	0	11.380707	-4.844132	0.625556
59	1	0	10.903386	-1.0/698/	2.645806
60	1	0	12.22/6/4	-3.126317	2.198591
61	/	0	-5.212552	1.141658	1.906541
62	l	0	-5.856930	1.918427	1.8890/6
63	6	0	-6.055107	-1.208654	1./1/3/1
64	6	0	-/.335663	-1.223534	1.112447
65	6	0	-5.170010	-2.264027	1.474072
66	6	0	-7.695417	-2.319740	0.263094
67	6	0	-8.308821	-0.180269	1.310781
68	6	0	-5.512665	-3.333682	0.652089
69	1	0	-4.187056	-2.236773	1.934995
70	6	0	-8.981158	-2.358843	-0.360457
71	6	0	-6.769992	-3.384992	0.033063
72	6	0	-9.534391	-0.218620	0.716233
73	1	0	-8.064456	0.659756	1.952304
74	1	0	-4.802522	-4.139194	0.483392
75	6	0	-9.918270	-1.303572	-0.141631
76	6	0	-9.337651	-3.454123	-1.208228
77	6	0	-7.156275	-4.473616	-0.823536
78	1	0	-10.248265	0.583380	0.886775
79	6	0	-11.176767	-1.360050	-0.764715

80	6	0	-10.606880	-3.468211	-1.809982
81	6	0	-8.381266	-4.507529	-1.416599
82	1	0	-6.441742	-5.276105	-0.988841
83	6	0	-11.514387	-2.432021	-1.589281
84	1	0	-11.887739	-0.555293	-0.595721
85	1	0	-10.876918	-4.301106	-2.454282
86	1	0	-8.658785	-5.337268	-2.061827
87	1	0	-12.491310	-2.461047	-2.063693

14. ¹H and ¹³C NMR spectra of synthesized compound

Figure S36. ¹H Spectra of synthesized compound 1.

Figure S37. ¹³C Spectra of synthesized compound 1.

Figure S38. ¹H Spectra of synthesized compound 2.

Figure S39. ¹³C Spectra of synthesized compound 2.

Figure S40. ¹H Spectra of synthesized compound 3.

Figure S41. ¹³C Spectra of synthesized compound 3.

Figure S42. ¹H Spectra of synthesized compound 8.

Figure S43. ¹³C Spectra of synthesized compound 8.