## For submission to *New J. Chem.* Revised Manuscript (NJ-ART-06-2017-001955) Synthesis, structures and magnetism of heterotrimetallic Ni-Cu-Ln complexes based on a dicompartmental imine-oxime ligand

Zhao-Xia Zhu,<sup>a</sup> Li-Zheng Cai,<sup>a</sup> Xiao-Wei Deng,<sup>a</sup> Yan-Ling Zhou\*<sup>b</sup> and Min-Xia Yao\*<sup>a</sup>

<sup>a</sup> College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing,

211816, P. R. China.

<sup>b</sup> School of Chemistry and Chemical Engineering, Guangxi University, Nanning,

530004, P. R. China

|            | 0        |            |           |
|------------|----------|------------|-----------|
| Cu1-N4     | 1.927(9) | Nil-O4A    | 2.208(7)  |
| Cu1-O2     | 1.931(7) | Gd1-O8     | 2.352(7)  |
| Cu1-O3     | 1.961(4) | Gd1-07     | 2.364(7)  |
| Cu1-N1     | 1.963(9) | Gd1-O11    | 2.367(7)  |
| Cu1-O14    | 2.624(4) | Gd1-O9     | 2.385(8)  |
| Ni1-N2     | 1.991(9) | Gd1-O12    | 2.389(7)  |
| Ni1-O3     | 1.994(6) | Gd1-O6     | 2.481(7)  |
| Ni1-N3     | 2.004(9) | Gd1-O5     | 2.344(7)  |
| Ni1-O2     | 2.049(7) | Gd1-O10    | 2.412(7)  |
| Ni1-O13    | 2.241(8) |            |           |
| N4-Cu1-O2  | 165.7(3) | O5-Gd1-O12 | 120.2(2)  |
| N4-Cu1-O3  | 87.2(3)  | O5-Gd1-O10 | 147.1 (2) |
| N4-Cu1-N1  | 101.5(4) | O5-Gd1-O6  | 69.1(2)   |
| O2-Cu1-O3  | 84.0(3)  | O8-Gd1-O7  | 71.1(2)   |
| O2-Cu1-N1  | 86.9(3)  | O8-Gd1-O11 | 145.8(2)  |
| O3-Cu1-N1  | 170.9(3) | O8-Gd1-O9  | 122.4(3)  |
| N2-Ni1-O3  | 168.4(3) | O8-Gd1-O12 | 79.4(2)   |
| N2-Ni1-N3  | 101.3(4) | O8-Gd1-O10 | 78.3(2)   |
| N2-Ni1-O2  | 88.2(3)  | O8-Gd1-O6  | 72.7(2)   |
| N2-Ni1-O4A | 93.1(3)  | O7-Gd1-O11 | 142.7(2)  |
| N2-Ni1-O13 | 83.7(3)  | O7-Gd1-O9  | 73.3(3)   |
| O3-Ni1-N3  | 90.2(3)  | O7-Gd1-O12 | 149.3(2)  |
|            |          |            |           |

Tble S1 Selected bond lengths (Å) and angles (°) for 1

\* To whom correspondence should be addressed. Email: yaomx@njtech.edu.cn. Fax: +86-25-58139528. Nanjing Tech University.

| O3-Ni1-O2                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|
| O3-Ni1-O4A                                                                                                                            |
| O3-Ni1-O13                                                                                                                            |
| N3-Ni1-O2                                                                                                                             |
| N3-Ni1-O4A                                                                                                                            |
| N3-Ni1-O13                                                                                                                            |
| O2-Ni1-O4A                                                                                                                            |
| O2-Ni1-O13                                                                                                                            |
| O4A-Ni1-O13                                                                                                                           |
| O5-Gd1-O7                                                                                                                             |
| O5-Gd1-O11                                                                                                                            |
| O5-Gd1-O9                                                                                                                             |
| O3-Ni1-O13<br>N3-Ni1-O2<br>N3-Ni1-O4A<br>N3-Ni1-O13<br>O2-Ni1-O4A<br>O2-Ni1-O13<br>O4A-Ni1-O13<br>O5-Gd1-O7<br>O5-Gd1-O7<br>O5-Gd1-O9 |

Symmetry transformations used to generate equivalent atoms: A: -x+1,-y,-z+1.

| Table S2 Selected | bond lengths (Å) | and angles (°) for 2 |
|-------------------|------------------|----------------------|

| Table 52 Selected Jolia | Tengens (TT) and angles ( | ) 101 2     |           |
|-------------------------|---------------------------|-------------|-----------|
| Cu1-O3                  | 1.946(3)                  | Ni1-O13     | 2.160(5)  |
| Cu1-N4                  | 1.949(4)                  | Tb1-O8      | 2.389(4)  |
| Cu1-N1                  | 1.950(5)                  | Tb1-O5      | 2.350(4)  |
| Cu1-O2                  | 1.963(3)                  | Tb1-O9      | 2.359(3)  |
| Cu1-O14                 | 2.460(4)                  | Tb1-O7      | 2.335(4)  |
| Ni1-N2                  | 2.003(5)                  | Tb1-O11     | 2.371(4)  |
| Ni1-O3                  | 2.014(3)                  | Tb1-O10     | 2.346(4)  |
| Ni1-O2                  | 2.044(4)                  | Tb1-O12     | 2.358(4)  |
| Ni1-N3                  | 2.011(5)                  | Tb1-O6      | 2.411(4)  |
| Ni1-O4A                 | 2.109(4)                  | O5- Tb1-O12 | 146.67(1) |
| N4-Cu1-O2               | 166.14(2)                 | O5- Tb1-O6  | 71.31(1)  |
| N4-Cu1-N1               | 98.22(2)                  | O7- Tb1-O8  | 71.17(3)  |
| O3-Cu1-O14              | 95.61(7)                  | O7- Tb1-O5  | 76.25(1)  |
| O3-Cu1-O2               | 80.47(2)                  | O7- Tb1-O11 | 74.62(1)  |
| O3-Cu1-N4               | 90.15(2)                  | O7- Tb1-O9  | 142.29(1) |
| O3-Cu1-N1               | 170.81(2)                 | O7- Tb1-O12 | 110.79(1) |
| N1-Cu1-O2               | 90.62(2)                  | O7- Tb1-O10 | 145.33(1) |
| N2-Ni1-O3               | 168.1 (2)                 | O7- Tb1-O6  | 85.16(1)  |
| N2-Ni1-N3               | 99.4(2)                   | O8- Tb1-O6  | 75.36(1)  |
| N2-Ni1-O2               | 91.19(2)                  | O9- Tb1-O8  | 146.13(1) |
| N2-Ni1-O4A              | 94.19(2)                  | O9- Tb1-O6  | 106.40(1) |
| O3-Ni1-O2               | 76.92(2)                  | O11-Tb1-O8  | 119.40(1) |
| O3-Ni1-O4A              | 89.13(2)                  | O11-Tb1-O6  | 147.77(1) |
| O3-Ni1-O13              | 85.66(2)                  | O10-Tb1-O12 | 74.35(1)  |
| N3-Ni1-O3               | 92.44(2)                  | O10-Tb1-O9  | 71.19(1)  |
| N3-Ni1-O2               | 168.41(2)                 | O10-Tb1-O11 | 135.81(1) |
| N3-Ni1-O4A              | 90.18(2)                  | O10-Tb1-O8  | 77.47(1)  |
| N3-Ni1-O13              | 86.5(2)                   | O10-Tb1-O6  | 72.79(1)  |
| O2-Ni1-O4A              | 94.19(1)                  | O10-Tb1-O12 | 74.35(1)  |

| O2-Ni1-O13  | 88.1(2)   | O10-Tb1-O5  | 119.12(1) |
|-------------|-----------|-------------|-----------|
| O4A-Ni1-O13 | 173.66(2) | O12-Tb1-O11 | 71.70(1)  |
| O5-Tb1-O8   | 134.70(1) | O12-Tb1-O8  | 75.90(1)  |
| O5-Tb1-O11  | 79.54(1)  | O12-Tb1-O6  | 140.06(1) |
| O5- Tb1-O9  | 74.04(1)  | O12-Tb1-O9  | 83.49(1)  |

Symmetry transformations used to generate equivalent atoms: A: -x+2,-y+2,-z+1.

Table S3 Selected bond lengths (Å) and angles (°) for  ${\bf 3}$ 

|             |           | )            |           |
|-------------|-----------|--------------|-----------|
| Cu1-N1      | 1.933(7)  | Nil-O13      | 2.149(7)  |
| Cu1-O3      | 1.941(5)  | Dy1-O5       | 2.329(5)  |
| Cu1-N4      | 1.953(6)  | Dy1-O8       | 2.361(5)  |
| Cu1-O2      | 1.954(5)  | Dy1-O7       | 2.330(5)  |
| Cu1-O14     | 2.444(8)  | Dy1-O11      | 2.346(5)  |
| Ni1-N2      | 1.999(7)  | Dy1-O9       | 2.353(6)  |
| Ni1-O3      | 2.014(5)  | Dy1-O12      | 2.334(5)  |
| Ni1-N3      | 2.003(8)  | Dy1-O6       | 2.408(6)  |
| Ni1-O2      | 2.037(5)  | Dy1-O10      | 2.360 (5) |
| Ni1-O4A     | 2.118(5)  | O5-Dy1-O8    | 135.09(5) |
| N1-Cu1-O2   | 90.5(2)   | O5-Dy1-O10   | 146.43(2) |
| N1-Cu1-O3   | 170.9(3)  | O5-Dy1-O6    | 71.34(2)  |
| O3-Cu1-O2   | 80.6(2)   | O7-Dy1-O6    | 85.2(2)   |
| O3-Cu1-N4   | 90.2(2)   | O7-Dy1-O11   | 142.31(2) |
| N4-Cu1-O2   | 167.0(2)  | O7-Dy1-O9    | 74.76(2)  |
| N2-Ni1-O3   | 168.75(0) | O7-Dy1-O12   | 145.38(2) |
| N2-Ni1-N3   | 98.7(3)   | O7-Dy1-O8    | 71.32(2)  |
| N2-Ni1-O2   | 91.8(3)   | O7-Dy1-O10   | 108.7(2)  |
| N2-Ni1-O13  | 95.4(3)   | O8-Dy1-O6    | 75.53(2)  |
| N2-Ni1-O4A  | 93.9(2)   | O9-Dy1-O6    | 147.09(2) |
| O3-Ni1-O2   | 76.9(2)   | O9-Dy1-O8    | 120.2(2)  |
| O3-Ni1-O4A  | 89.2(2)   | O9-Dy1-O10   | 71.28(2)  |
| O3-Ni1-O13  | 84.0(2)   | O10-Dy1-O8   | 75.04(2)  |
| N3-Ni1-O3   | 92.5(3)   | O10-Dy1-O6   | 141.01(2) |
| N3-Ni1-O2   | 168.0(3)  | O11-Dy1-O10  | 85.52(2)  |
| N3-Ni1-O4A  | 91.6(3)   | O11-Dy1-O9   | 77.5(2)   |
| N3-Ni1-O13  | 84.5(3)   | O11-Dy1-O8   | 146.04(2) |
| O4A-Ni1-O13 | 172.0(2)  | O11-Dy1-O6   | 105.81(2) |
| O2-Ni1-O13  | 88.7(3)   | O12-Dy1-O11  | 71.22(2)  |
| O5- Dy1-O7  | 76.42(1)  | O12-Dy1-O8   | 76.96(2)  |
| O5- Dy1-O12 | 120.0(2)  | O12-Dy1-O6   | 73.68(2)  |
| O5- Dy1-O11 | 73.50(2)  | O12-Dy1-O9   | 135.35(2) |
| O5- Dy1-O9  | 78.66(2)  | O12- Dy1-O10 | 75.21(2)  |

Symmetry transformations used to generate equivalent atoms: A: -x+2,-y+2,-z+1.

| Table 54 Selected t | bond lengths (A) and an | igles ( ) 101 4 |           |  |
|---------------------|-------------------------|-----------------|-----------|--|
| Cu1-N1              | 1.942(5)                | Ni1-013         | 2.146(4)  |  |
| Cu1-O3              | 1.950(4)                | Ho1-O7          | 2.299(1)  |  |
| Cu1-N4              | 1.947(5)                | Ni1-O13         | 2.146(6)  |  |
| Cu1-O2              | 1.964(4)                | Ho1-O5          | 2.331 (4) |  |
| Cu1-O14             | 2.418(4)                | Ho1-O8          | 2.368(4)  |  |
| Ni1-N2              | 1.996(6)                | Ho1-O9          | 2.346(4)  |  |
| Ni1-O3              | 2.022(4)                | Ho1-O10         | 2.319(5)  |  |
| Ni1-N3              | 2.015(6)                | Ho1-O11         | 2.344(5)  |  |
| Ni1-O2              | 2.041(4)                | Ho1-O12         | 2.336(4)  |  |
| Ni1-O4A             | 2.104(4)                | Ho1-O6          | 2.388(5)  |  |
| N1-Cu1-O2           | 91.1(2)                 | O5-Ho1-O8       | 135.54(2) |  |
| N1-Cu1-O3           | 171.2(2)                | O5-Ho1-O11      | 78.45(2)  |  |
| N1-Cu1-N4           | 97.9(2)                 | O7-Ho1-O5       | 76.22(2)  |  |
| O3-Cu1-O2           | 80.37(2)                | O7-Ho1-O6       | 85.03(2)  |  |
| N4-Cu1-O3           | 90.14(2)                | O7-Ho1-O11      | 74.42(2)  |  |
| N4-Cu1-O2           | 166.28(2)               | O7-Ho1-O9       | 141.60(2) |  |
| N2-Ni1-O3           | 168.4(2)                | O7-Ho1-O12      | 110.64(2) |  |
| N2-Ni1-N3           | 98.9(2)                 | O7-Ho1-O8       | 72.03(2)  |  |
| N2-Ni1-O2           | 91.5(2)                 | O7-Ho1-O10      | 145.42(2) |  |
| N2-Ni1-O13          | 93.0(5)                 | O8-Ho1-O6       | 75.06(2)  |  |
| N2-Ni1-O4A          | 92.5(2)                 | O9-Ho1-O6       | 106.73(2) |  |
| O3-Ni1-O2           | 76.87(2)                | O9-Ho1-O8       | 145.95(2) |  |
| O3-Ni1-O4A          | 89.11(2)                | O10- Ho1-O12    | 74.34(2)  |  |
| O3-Ni1-O13          | 86.2(2)                 | O10- Ho1-O8     | 76.69(2)  |  |
| N3-Ni1-O3           | 92.6(2)                 | O10-Ho1-O11     | 136.14(2) |  |
| N3-Ni1-O2           | 168.3(2)                | O10-Ho1-O5      | 119.35(2) |  |
| N3-Ni1-O4A          | 90.7(2)                 | O10-Ho1-O6      | 72.87(2)  |  |
| N3-Ni1-O13          | 85.1(3)                 | O10-Ho1-O9      | 71.75(2)  |  |
| 02-Ni1-O4A          | 94.03(2)                | O11-Ho1-O9      | 77.03(2)  |  |
| 02-Ni1-O13          | 89.2(3)                 | O11-Ho1-O8      | 120.34(2) |  |
| 04A-Ni1-O13         | 173.5(2)                | O11-Ho1-O6      | 147.21(2) |  |
| Э5-Но1-Об           | 71.91(2)                | O12-Ho1-O11     | 72.42(4)  |  |
| O5-Ho1-O12          | 149.48(2)               | O12-Ho1-O6      | 139.80(2) |  |
| O5-Ho1-O9           | 73.32(2)                | O12-Ho1-O9      | 84.08(3)  |  |

Symmetry transformations used to generate equivalent atoms: A: -x+1,-y+2,-z+1.

| Geometry | CU-8 | SAPR-8 | TDD-8 |
|----------|------|--------|-------|
| 1        | 8.15 | 1.04   | 0.87  |
| 2        | 8.34 | 0.59   | 1.12  |
| 3        | 8.45 | 0.68   | 0.95  |
| 4        | 8.44 | 0.56   | 1.08  |

Table S5. Results of the Continuous Shape Measure Analysisa geometry<sup>a</sup>

<sup>a</sup>CU-8 is the shape measure relative to the cube; SAPR-8 is the shape measure relative to the square antiprism; TDD-8 is the shape measure relative to the triangular dodecahedron. The number in bold corresponds to the closer ideal geometry to the real complexes.









Figure S1. (a)-(d): The IR spectra of compounds 1-4, respectively.





Figure S2. Perspective drawing of the crystallographically structural unit of 1 (a), 3 (b) and 4 (c) showing the atom numbering. H atoms and solvent molecules are omitted for clarity



**Figure S3.** Up: The dimeric  $[Ni(MeOH)(HL)Cu(MeOH)]_2^{2+}$  cation in **1** is linked to two  $[Gd(dbm)_4]^-$  anions by two H<sub>2</sub>O molecules and four methanol molecules with O-H…O H-bonding interactions. Down: A view showing 3D structure formed by weak O-H…O, C-H…C and C-H… $\pi$  interactions in **1**.



**Figure S4.** Up: The dimeric  $[Ni(MeOH)(HL)Cu(MeOH)]_2^{2+}$  cation in **2-4** is linked to two  $[Ln(dbm)_4]^-$  anions by six methanol molecules with O–H···O H-bonding interactions. Down: A view showing 3D structure formed by weak O–H···O, C–H···C and C–H··· $\pi$  interactions in **2-4**.



**Figure S5**. Temperature dependence of the in-phase  $\chi'$  and out-of-phase  $\chi''$  at different frequencies in a 3 Oe ac field oscillating at 3–969 Hz with a zerodc field for **2**.



**Figure S6**. Temperature dependence of the in-phase  $\chi'$  and out-of-phase  $\chi''$  at different frequencies in a 3 Oe ac field oscillating at 3–969 Hz with a zerodc field for 4.