Electronic Supplement Information for

A triptycene-cored perylenediimide derivative and its
 application in organic solar cells as a non-fullerene acceptor

Li-Peng Zhang, ${ }^{\text {a }}$ Wenchao Zhao, ${ }^{\text {bc }}$ Xiaoyu Liu, ${ }^{\text {bc }}$ Ke-Jian Jiang, ${ }^{* a}$ Feng-Ting Li, ${ }^{\text {ac }}$ Jianhui Hou, ${ }^{\text {b }}$ and Lian-Ming Yang*a
${ }^{a}$ Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. E-mail: kjiiang@iccas.ac.cn, yanglm@iccas.ac.cn
${ }^{\text {b }}$ State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. E-mail: hjhzlz@iccas.ac.cn
${ }^{\text {c }}$ University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

Materials

All of solvents were purified according to standard methods. All reagents were commercially obtained from Alfa Aesar Chemical Co. and J\&K Chemical Co. and used without further purification unless otherwise specified. All manipulations involving air-sensitive reagents were performed in an atmosphere of dry argon. 2,6(7),14-Tribromo-triptycene (TRIP-3Br) was synthesized according to the reference procedure. ${ }^{1}$

Measurements and characterization

NMR spectra were recorded on a BRUKER AVANCE 400 MHz instrument. The residual solvent protons $\left({ }^{1} \mathrm{H}\right)$ or the solvent carbons $\left({ }^{13} \mathrm{C}\right)$ were used as internal standards. ${ }^{1} \mathrm{H}$ NMR data are presented as follows: the chemical shift in ppm (δ) downfield from tetramethylsilane (multiplicity, coupling constant (Hz), integration). The following abbreviations are used in the NMR data reported: s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet. UVvis absorption spectra were recorded on a Shimadzu UV-1800 spectrophotometer. Mass spectra were taken on a Bruker Daltonics Inc. spectrometer. Cyclic voltammetry measurements were carried out on a Shanghai Chenhua CHI660C electrochemical workstation. The thermal properties were tested on a Netzsch TG209 F3 thermogravimetric analyzer and a TA Q2000 DSC analyzer. The active layer film thickness data were obtained via the surface profilometer (Bruker Dektak XT). The photoactive area of 4.15 mm^{2} was achieved using a shadow mask. The $J-V$ test were conducted using a Class AAA solar simulator (SAN-EI) affording a value of $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$. The EQE data were obtained using an IPCE measurement system (QE-R3011, Enli Technology Co. Ltd., Taiwan).

Synthesis

2,6(7),14-Tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-triptycene (TRIP-3B). A mixture of 2,6(7),14-tribromo- triptycene (TRIP-3Br) ${ }^{2}(420 \mathrm{mg}, 0.86 \mathrm{mmol}$), bis(pinacolato)diboron ($740 \mathrm{mg}, 2.91 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{dppf}_{2}{ }_{2}(32 \mathrm{mg}, 0.043 \mathrm{mmol})\right.$,

KOAc ($420 \mathrm{mg}, 4.28 \mathrm{mmol}$) and dry toluene (20 mL) was refluxed for 15 h under a nitrogen atmosphere. After removal of the solvent, the residue was dissolved in ethyl acetate $(100 \mathrm{~mL})$. Then the organic phase washed with brine $(50 \mathrm{~mL})$, and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was purified by silica gel column chromatography (eluting with dichloromethane) to afford the product TRIP3B ($341 \mathrm{mg}, 63 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.29(\mathrm{~s}, 36 \mathrm{H})$, 5.45 (d, 2H), 7.34-7.37 (m, 3H), 7.45 (dd, 3H), $7.80(\mathrm{~d}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100$ MHz): δ 24.7, 24.8, 25.0, 54.1, 54.4, 83.6, 83.6, 123.1, 123.2, 129.5, 129.6, 129.6, 132.2, 132.3, 132.5, 143.8, 144.1, 144.5, 147.7, 148.1, 148.4. HR-MS (MALDI): m/z $[M]^{+}$cacld for $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{~B}_{3} \mathrm{O}_{6}, 632.3652$; found, 632.3613 .

TRIP-PDI ${ }_{3}$. A mixture of TRIP-3B ($95 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{PDI}-\mathrm{Br}(499 \mathrm{mg}, 0.60$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}),\left(\mathrm{K}_{2} \mathrm{CO}_{3} 138 \mathrm{mg}, 1.0 \mathrm{mmol}\right)$ was dissolved in the mixed toluene (25 mL) and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, and then refluxed for 20 h under a nitrogen atmosphere. After removal of the solvent, the residue was dissolved in dichloromethane (200 mL), and the organic phase washed with brine $(50 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was purified by silica gel column chromatography (eluting with dichloromethane/petroleum ether $15 / 50, \mathrm{v} / \mathrm{v})$ to afford the product TRIP-PDI $\mathbf{3}_{3}(169 \mathrm{mg}, 45 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.81-0.86(\mathrm{~m}, 36 \mathrm{H}), 1.25-1.41(\mathrm{~m}, 86 \mathrm{H}), 1.59(\mathrm{~s}, 13 \mathrm{H}), 1.70-$ $1.87(\mathrm{~m}, 10 \mathrm{H}), 2.20-2.27(\mathrm{~m}, 12 \mathrm{H}), 5.23(\mathrm{t}, 6 \mathrm{H}), 5.60-5.73(\mathrm{~m}, 2 \mathrm{H}), 7.05-8.09(\mathrm{~m}$, 18H), 8.53-8.70 (m, 12H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 165.02,163.96,147.54$, $145.48,141.69,140.05,137.08,135.05,134.70,132.83,131.63,130.55,130.14$, 129.39, 128.76, 128.42, 127.75, 126.44, 125.88, 125.08, 123.76, 123.27, 122.84, 54.96, 54.78, 53.85, 32.61, 31.97, 29.93, 29.42, 27.44, 27.09, 22.79, 14.24. HR-MS (MALDI): m/z [M+1] ${ }^{+}$cacld for $\mathrm{C}_{170} \mathrm{H}_{194} \mathrm{~N}_{6} \mathrm{O}_{12}$, 2512.4788; found, 2534.4747 $[\mathrm{M}+\mathrm{Na}]^{+}$.

TRIP-3Br

Scheme S1 Synthetic route to TRIP-PDI 3

NMR spectra of TRIP-3B and TRIP-PDI 3

Figure S1 DSC curves of TRIP-PDI ${ }_{3}$ under N_{2} atmosphere

SCLC measurements

The hole and electron mobility data was extracted from the dark $J-V$ characteristics
of hole-only devices, ITO/PEDOT:PSS/PBDT-TS1:TRIP-PDI ${ }_{3} / \mathrm{Au}$, and electron only devices ITO/ZnO/PBDT-TS1:TRIP-PDI ${ }_{3} / \mathrm{Al}$ devices. The electrical characteristics were measured with a source/measure unit (Keithley 4200) in a N_{2} filled glove box. The dark $J-V$ curves were fitted by using the Mott-Gurney equation (eq. 1), where J is the dark current density, ε_{0} is the vacuum permittivity, ε is the static dielectric constant of the medium, μ_{0} is the zero-field mobility, γ is the disorder parameter, V is the effective voltage and L is the film thickness. For the case of holeonly devices the built in voltage $\left(\mathrm{V}_{\mathrm{bi}}\right)$ value of 0 V and for electron only devices $\mathrm{V}_{\mathrm{bi}}=$ 1.5 V was used. ${ }^{2}$

$$
\begin{equation*}
J(V)=\frac{9}{8} \varepsilon_{0} \varepsilon_{r} \mu_{0} \exp (0.89 \gamma \sqrt{V} / L) \frac{V^{2}}{L^{3}} \tag{1}
\end{equation*}
$$

Fig. S2 $J_{0.5}-V$ curves of the electron-only devices based on PBDT-TS1:TRIP-PDI ${ }_{3}$ films.

Fig. S3 $J_{0.5}-V$ curves of the electron-only devices based on PBDT-TS1:TRIP-PDI ${ }_{3}$ films and TRIP-PDI ${ }_{3}$

Table S1. The detailed photovoltaic performances of the solar cells based on PBDTTS1 and TRIP-PDI ${ }_{3}$

D/A (w/w)	Spin-coating (rpm)	$\begin{gathered} J_{s c} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right)^{\mathrm{b}} \end{gathered}$	$V_{o c}(\mathrm{~V})$	FF	PCE (\%)	Aver. PCE $\left(\pm \text { Std. dev.) (\%) }{ }^{\text {c }}\right.$	Thickness $(\mathrm{nm})^{\mathrm{d}}$
$1.5: 1^{\text {a }}$	1000	10.27	0.96	0.35	3.45	---	110
	1500	9.19	0.96	0.41	3.61	$3.53(\pm 0.112)$	73
	2000	8.52	0.96	0.41	3.35	---	56
$1: 1^{\text {a }}$	1000	10.68	0.98	0.37	3.87	---	120
	1500	9.77	0.98	0.43	$4.11^{\text {e }}$	$3.98(\pm 0.102)$	74
	2000	8.62	0.98	0.46	3.89	---	63
$1: 1$	1500	10.26	0.96	0.46	4.53	$4.41(\pm 0.095)^{\text {f }}$	85
	1500	11.43	0.95	0.40	4.34 g	--	85
	1500	10.83	0.96	0.42	4.37 h	--	85
	1500	10.43	0.97	0.40	$4.05^{\text {i }}$	$3.89(\pm 0.102)$	87
	1500	10.22	0.96	0.41	$4.02{ }^{\text {j }}$	$3.92(\pm 0.10)$	84
	1500	11.17	0.97	0.40	4.33 k	$4.22(\pm 0.10)$	86
$1: 1.5^{\text {a }}$	1000	7.11	0.97	0.31	2.14	---	188
	1500	10.33	0.98	0.38	3.85	$3.68(\pm 0.114)$	122
	2000	9.89	0.97	0.36	3.45	---	110

${ }^{\text {a }}$ As-cast. ${ }^{\mathrm{b}}$ Calculated by convoluting the spectral response with the AM 1.5 G spectrum $\left(100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}\right)$. ${ }^{\mathrm{c}}$ Average values from 6 pieces of devices. ${ }^{\mathrm{d}}$ The thickness data were obtained via the surface profilometer (Bruker Dektak XT). ${ }^{\mathrm{e}}$ Without additive. ${ }^{\mathrm{f}}$ With $0.5 \% 1,8$-diiodooctane (DIO). ${ }^{g}$ With 1.0% DIO. ${ }^{h}$ With 1.5% DIO. ${ }^{\mathrm{I}}$ With $0.5 \% 1$-chloronaphthalene CN. ${ }^{\mathrm{j}}$ With $0.5 \% \mathrm{~N}$ methyl pyrrolidone (NMP). ${ }^{\mathrm{K}}$ With 0.5% diphenyl ether(DPE).

Fig. S4 $J-V$ curves of OSCs based on PBDT-TS1 and TRIP-PDI ${ }_{3}$: a) with different D/A ratios, c) with different amount of additive and e) with different additives; EQE spectra of PBDT-TS1:TRIP-PDI ${ }_{3}$ based OSCs: d) with different D/A ratios, d) with different amount of additive and f) with different additives.

Fig. S5 Morphology images of the D/A blend film: a), b) and c) are the AFM height images, a) with $0.5 \% \mathrm{CN}, \mathrm{b}$) with 0.5% NMP, c) with $0.5 \% \mathrm{DPE} ; \mathrm{d}$), e) and f) are the AFM phase images, d) with $0.5 \% \mathrm{CN}, \mathrm{e}$) with $0.5 \% \mathrm{NMP}, \mathrm{f})$ with $0.5 \% \mathrm{DPE}$.

References

1. C. Zhang and C. F. Chen, J. Org. Chem., 2006, 71, 6626.
2. T. Ye, R. Singh, H. -J. Butt, G. Floudas, and P. E. Keivanidis, ACS Appl. Mater. Interfaces, 2013, 5, 11844.
