Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplement Information for

A triptycene-cored perylenediimide derivative and its

application in organic solar cells as a non-fullerene acceptor

Li-Peng Zhang,^a Wenchao Zhao,^{bc} Xiaoyu Liu,^{bc} Ke-Jian Jiang,^{*a} Feng-Ting Li,^{ac} Jianhui Hou,^{*b} and Lian-Ming Yang^{*a}

^a Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. E-mail: kjjiang@iccas.ac.cn, yanglm@iccas.ac.cn

^b State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. E-mail: <u>hjhzlz@iccas.ac.cn</u>

^c University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

Materials

All of solvents were purified according to standard methods. All reagents were commercially obtained from Alfa Aesar Chemical Co. and J&K Chemical Co. and used without further purification unless otherwise specified. All manipulations involving air-sensitive reagents were performed in an atmosphere of dry argon. 2,6(7),14-Tribromo-triptycene (**TRIP-3Br**) was synthesized according to the reference procedure.¹

Measurements and characterization

NMR spectra were recorded on a BRUKER AVANCE 400 MHz instrument. The residual solvent protons (¹H) or the solvent carbons (¹³C) were used as internal standards. ¹H NMR data are presented as follows: the chemical shift in ppm (δ) downfield from tetramethylsilane (multiplicity, coupling constant (Hz), integration). The following abbreviations are used in the NMR data reported: s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet. UVrecorded Shimadzu UV-1800 vis absorption spectra were on а spectrophotometer. Mass spectra were taken on a Bruker Daltonics Inc. spectrometer. Cyclic voltammetry measurements were carried out on a Shanghai Chenhua CHI660C electrochemical workstation. The thermal properties were tested on a Netzsch TG209 F3 thermogravimetric analyzer and a TA Q2000 DSC analyzer. The active layer film thickness data were obtained via the surface profilometer (Bruker Dektak XT). The photoactive area of 4.15 mm^2 was achieved using a shadow mask. The J–V test were conducted using a Class AAA solar simulator (SAN-EI) affording a value of 100 mW cm⁻². The EQE data were obtained using an IPCE measurement system (QE-R3011, Enli Technology Co. Ltd., Taiwan).

Synthesis

2,6(7),14-Tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-triptycene (TRIP-3B).

A mixture of 2,6(7),14-tribromo- triptycene (**TRIP-3Br**)² (420 mg, 0.86 mmol), bis(pinacolato)diboron (740 mg, 2.91mmol), $PdCl_2(dppf)_2$ (32 mg, 0.043 mmol),

KOAc (420 mg,4.28 mmol) and dry toluene (20 mL) was refluxed for 15 h under a nitrogen atmosphere. After removal of the solvent, the residue was dissolved in ethyl acetate (100 mL). Then the organic phase washed with brine (50 mL), and dried over anhydrous MgSO₄. After removal of the solvent, the residue was purified by silica gel column chromatography (eluting with dichloromethane) to afford the product **TRIP-3B** (341 mg, 63%) as a white solid. ¹H NMR (CDCl₃, 400 MHz): δ 1.29 (s, 36H), 5.45 (d, 2H), 7.34–7.37 (m, 3H), 7.45 (dd, 3H), 7.80 (d, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 24.7, 24.8, 25.0, 54.1, 54.4, 83.6, 83.6, 123.1, 123.2, 129.5, 129.6, 129.6, 132.2, 132.3, 132.5, 143.8, 144.1, 144.5, 147.7, 148.1, 148.4. HR-MS (MALDI): m/z [M]⁺ cacld for C₃₈H₄₇B₃O₆, 632.3652; found, 632.3613.

TRIP-PDI₃. A mixture of TRIP-3B (95 mg, 0.15 mmol), PDI-Br (499 mg, 0.60 mmol), Pd (PPh₃)₄ (30 mg), (K₂CO₃138 mg, 1.0 mmol) was dissolved in the mixed toluene (25 mL) and H₂O (3mL), and then refluxed for 20 h under a nitrogen atmosphere. After removal of the solvent, the residue was dissolved in dichloromethane (200 mL), and the organic phase washed with brine (50 mL) and dried over anhydrous MgSO₄. After removal of the solvent, the residue was purified by silica gel column chromatography (eluting with dichloromethane/petroleum ether 15/50, v/v) to afford the product **TRIP-PDI**₃ (169 mg, 45%) as a red solid. ¹H NMR (CDCl₃, 400 MHz): δ 0.81–0.86 (m, 36H), 1.25–1.41 (m, 86H), 1.59 (s, 13 H), 1.70– 1.87 (m, 10H), 2.20–2.27 (m, 12H), 5.23 (t, 6H), 5.60–5.73 (m, 2H), 7.05–8.09 (m, 18H), 8.53-8.70 (m, 12H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.02, 163.96, 147.54, 145.48, 141.69, 140.05, 137.08, 135.05, 134.70, 132.83, 131.63, 130.55, 130.14, 129.39, 128.76, 128.42, 127.75, 126.44, 125.88, 125.08, 123.76, 123.27, 122.84, 54.96, 54.78, 53.85, 32.61, 31.97, 29.93, 29.42, 27.44, 27.09, 22.79, 14.24. HR-MS (MALDI): m/z [M+1]⁺ cacld for $C_{170}H_{194}N_6O_{12}$, 2512.4788; found, 2534.4747 $[M+Na]^+$.

NMR spectra of $TRIP\mbox{-}3B$ and $TRIP\mbox{-}PDI_3$

Figure S1 DSC curves of $TRIP-PDI_3$ under N_2 atmosphere

SCLC measurements

The hole and electron mobility data was extracted from the dark J-V characteristics

of hole-only devices, ITO/PEDOT:PSS/**PBDT-TS1:TRIP-PDI**₃/Au, and electron only devices ITO/ZnO/**PBDT-TS1:TRIP-PDI**₃/Al devices. The electrical characteristics were measured with a source/measure unit (Keithley 4200) in a N₂filled glove box. The dark *J*–*V* curves were fitted by using the Mott-Gurney equation (eq. 1), where *J* is the dark current density, ε_0 is the vacuum permittivity, ε is the static dielectric constant of the medium, μ_0 is the zero-field mobility, γ is the disorder parameter, *V* is the effective voltage and *L* is the film thickness. For the case of holeonly devices the built in voltage (Vbi) value of 0V and for electron only devices Vbi = 1.5 V was used.²

Fig. S2 $J_{0.5}-V$ curves of the electron-only devices based on **PBDT-TS1:TRIP-PDI**₃ films.

Fig. S3 $J_{0.5}-V$ curves of the electron-only devices based on PBDT-TS1:TRIP-PDI₃ films and TRIP-PDI₃

D/A	Spin-coating	J_{sc}	$V_{oc}\left(\mathbf{V}\right)$	FF	PCE (%)	Aver. PCE	Thickness
(w/w)	(rpm)	(mA cm ⁻²) ^b				(±Std. dev.) (%) ^c	(nm) ^d
1.5 : 1ª	1000	10.27	0.96	0.35	3.45		110
	1500	9.19	0.96	0.41	3.61	3.53(±0.112)	73
	2000	8.52	0.96	0.41	3.35		56
1 : 1ª	1000	10.68	0.98	0.37	3.87		120
	1500	9.77	0.98	0.43	4.11 ^e	3.98(±0.102)	74
	2000	8.62	0.98	0.46	3.89		63
1:1	1500	10.26	0.96	0.46	4.53	$4.41(\pm 0.095)^{f}$	85
	1500	11.43	0.95	0.40	4.34 g		85
	1500	10.83	0.96	0.42	4.37 ^h		85
	1500	10.43	0.97	0.40	4.05 ⁱ	3.89(±0.102)	87
	1500	10.22	0.96	0.41	4.02 ^j	3.92(±0.10)	84
	1500	11.17	0.97	0.40	4.33 ^k	4.22(±0.10)	86
1 : 1.5ª	1000	7.11	0.97	0.31	2.14		188
	1500	10.33	0.98	0.38	3.85	3.68(±0.114)	122
	2000	9.89	0.97	0.36	3.45		110

Table S1. The detailed photovoltaic performances of the solar cells based on PBDT-TS1 and TRIP-PDI₃

^a As-cast. ^b Calculated by convoluting the spectral response with the AM 1.5G spectrum (100mW cm⁻²). ^c Average values from 6 pieces of devices. ^d The thickness data were obtained *via* the surface profilometer (Bruker Dektak XT). ^e Without additive. ^f With 0.5% 1,8-diiodooctane (DIO). ^g With 1.0% DIO. ^h With 1.5% DIO. ¹ With 0.5% 1-chloronaphthalene CN. ^j With 0.5% *N*-methyl pyrrolidone (NMP). ^k With 0.5% diphenyl ether(DPE).

Fig. S4 J-V curves of OSCs based on **PBDT-TS1** and **TRIP-PDI₃** : a) with different D/A ratios, c) with different amount of additive and e) with different additives; EQE spectra of **PBDT-TS1:TRIP-PDI₃** based OSCs: d) with different D/A ratios, d) with different amount of additive and f) with different additives.

Fig. S5 Morphology images of the D/A blend film: a), b) and c) are the AFM height images, a) with 0.5% CN, b) with 0.5% NMP, c) with 0.5% DPE; d), e) and f) are the AFM phase images, d) with 0.5% CN, e) with 0.5% NMP, f) with 0.5% DPE.

References

1. C. Zhang and C. F. Chen, J. Org. Chem., 2006, 71, 6626.

2. T. Ye, R. Singh, H. -J. Butt, G. Floudas, and P. E. Keivanidis, ACS Appl. Mater. Interfaces, 2013, 5, 11844.