Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Control of structure, stability and catechol oxidase activity of copper(II) complexes by the denticity of tripodal platforms

Ferenc Matyuska^a, Nóra V. May^b, Attila Bényei^c and Tamás Gajda^{a,*}

^a Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. E-mail: gajda@chem.u-szeged.hu

^b Research Centre for Natural Sciences HAS, Magyar tudósok körútja 2, H-1117 Budapest, Hungary

^c Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary

Table S1. Geometric parameters (Å, °) for trenpyz×3HCl×2H₂O

Figure S1. H-bonding network in the immediate surrounding of the ligand in trenpyz×3HCl×2H₂O (H atoms and the third leg of the ligand are omitted for clarity).

Table S2. Selected hydrogen bond distances and angles in the crystal structure 1

Figure S2. Packing arrangement of **1** viewing from the crystallographic directions a, b and c **Figure S3.** Conformational comparison of the metal complex cation $[Cu(trenpyz)]^{2+}$ in crystal structure **1** (pink), with $[Cu(H_2L)]^+$ in OREGAU [OREGAU] (coloured by element).

Figure S4. Hydrogen bond connections between the $[Cu(trenpyz)]^{2+}$ complex cation and perchlorate

Figure S5 Individual molar Vis/NIR spectra of the mononuclear copper(II)-trenpyz complexes

Figure S6 Individual molar Vis/NIR spectra of the trinuclear copper(II)-trenpyz complexes **Figure S7** Effect of pH on the Vis/NIR spectra of the copper(II)-trenpyz 3:2 systems in 50% EtOH-H₂O,

Figure S8 Individual molar Vis/NIR spectra of the trinuclear copper(II)-trenpyz complexes in 50% EtOH-H₂O

Figure S9. UV-Vis spectra of Cu(II)-L 3/2 system as a function of H₂dtbc concentration under anaerobic conditions in 50% EtOH-H₂O at pH = 7.2 ($c_{Cu_3H_2}L_2 = 3.358 \times 10^{-4}$ M).

Figure S10. Cyclic voltammogram of the copper(II)-trenpyz 3/2 system in 50 % EtOH-H₂O at pH = 7.2

Figure S11. Rate constants of H_2 dtbc oxidation promoted by the copper(II)-trenpyz 3/2 system in 50% EtOH-H₂O as a function of the concentration of trinuclear complexes

Figure S12. Rate constants of H_2 dtbc oxidation promoted by the copper(II)-trenpyz 3/2 system in 50% EtOH-H₂O as a function of the concentration of dissolved dioxygen

Figure S13. H_2O_2 and dtbq formation during H_2 dtbc oxidation promoted by the copper(II)-trenpyz 3/2 system in aqueous solution at pH = 8.1

Figure S14. Time dependence of EPR spectra detected at room temperature and at 77 K of the Cu(II)-trenpyz 3/2 system during the oxidation of H₂dtbc under aerobic conditions

C2—N1	1.472 (9)	C14—H14	0.93
C2—C3	1.504 (12)	C15—N11	1.343 (15)
C2—H2C	0.97	C15—H11	0.93
C2—H2D	0.97	N1—C2 ⁱ	1.472 (9)
C3—N4	1.462 (10)	N1—C2 ⁱⁱ	1.472 (9)
С3—НЗА	0.97	N4—H4A	0.89
С3—Н3В	0.97	N4—H4B	0.89
C5—C13	1.463 (12)	N11—N12	1.327 (12)
C5—N4	1.512 (10)	N11—H11A	0.86
С5—Н5А	0.97	O1W—H1A	0.86 (2)
С5—Н5В	0.97	O1W—H1B	0.86 (2)
C13—N12	1.336 (13)	O2W—H2A	1.0 (2)
C13—C14	1.401 (14)	O2W—H2B	0.96 (17)
C14—C15	1.329 (15)		
N1—C2—C3	114.0 (7)	C15—C14—C13	106.9 (10)
N1—C2—H2C	108.8	C15—C14—H14	126.6
С3—С2—Н2С	108.8	C13—C14—H14	126.6
N1—C2—H2D	108.8	C14—C15—N11	105.9 (9)
C3—C2—H2D	108.8	C14—C15—H11	127.1
H2C—C2—H2D	107.7	N11—C15—H11	127
N4—C3—C2	112.2 (6)	C2 ⁱ —N1—C2 ⁱⁱ	109.9 (5)
N4—C3—H3A	109.2	C2 ⁱ —N1—C2	109.9 (5)
С2—С3—НЗА	109.2	C2 ⁱⁱ —N1—C2	109.9 (5)
N4—C3—H3B	109.2	C3—N4—C5	113.8 (6)
С2—С3—Н3В	109.2	C3—N4—H4A	108.8
НЗА—СЗ—НЗВ	107.9	C5—N4—H4A	108.8
C13—C5—N4	113.1 (7)	C3—N4—H4B	108.8
С13—С5—Н5А	109	C5—N4—H4B	108.8
N4—C5—H5A	109	H4A—N4—H4B	107.7
С13—С5—Н5В	108.9	N12—N11—C15	113.3 (9)
N4—C5—H5B	108.9	N12—N11—H11A	123.4
H5A—C5—H5B	107.8	C15—N11—H11A	123.4
N12—C13—C14	109.3 (7)	N11—N12—C13	104.5 (8)
N12—C13—C5	121.6 (9)	H1A—O1W—H1B	136 (6)
C14—C13—C5	129.1 (10)	H2A—O2W—H2B	121 (10)
N1-C2-C3-N4	70.7 (9)	C3—C2—N1—C2 ⁱⁱ	79.6 (11)

Table S1. Geometric parameters (Å, °) for trenpyz×3HCl×2H₂O

N4—C5—C13—N12	88.4 (10)	C2—C3—N4—C5	-178.8 (8)
N4—C5—C13—C14	-90.3 (11)	C13—C5—N4—C3	-166.5 (8)
N12—C13—C14—C15	-0.6 (10)	C14—C15—N11—N12	-3.8 (11)
C5-C13-C14-C15	178.3 (8)	C15—N11—N12—C13	3.4 (10)
C13—C14—C15—N11	2.5 (10)	C14—C13—N12—N11	-1.6 (9)
C3—C2—N1—C2 ⁱ	-159.2 (8)	C5—C13—N12—N11	179.4 (7)

Symmetry codes: (i) y, z, x; (ii) z, x, y.

Hydrogen-bond geometries (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2 <i>D</i> ···CL2	0.97	2.91	3.699 (9)	140
C5—H5 <i>A</i> ···CL2_\$1 ⁱⁱⁱ	0.97	2.84	3.755 (9)	157
N4—H4A…CL2	0.89	2.21	3.091 (7)	168
N4—H4 <i>B</i> ⋯CL1	0.89	2.34	3.216 (7)	170
N11—H11A···CL2_\$2 ^{iv}	0.86	2.33	3.173 (9)	168
O1 <i>₩</i> —H1 <i>B</i> …N12	0.86 (2)	2.34 (13)	2.859 (9)	119 (11)
O1 <i>W</i> —H1 <i>B</i> ⋯O2 <i>W</i>	0.86 (2)	1.84 (8)	2.37 (3)	118 (8)

Symmetry codes: (iii) -y+1/2, -z+1/2, x+1/2; (iv) x, -y+1, -z+1.

Figure S1. H-bonding network in the immediate surrounding of the ligand in trenpyz×3HCl×2H₂O (H atoms and the third leg of the ligand are omitted for clarity).

D —Н···A	D —H (Å)	H…A (Å)	D …A (Å)	D —H···A (°)
N2—H2N…N9	1.00	2.07	2.926(4)	143
N4—H4N…N6	0.88	2.07	2.808(5)	140
N5—H5NO5	1.00	2.08	2.996(5)	151
N7—H7N…O2 ⁱ	0.88	2.49	3.084(4)	126
N7—H7N—O4 ⁱ	0.88	2.11	2.945(4)	159
N8—H8NO2 ⁱⁱ	1.00	2.58	3.215(5)	121
N10—H10NO6 ⁱⁱⁱ	0.88	2.25	3.028(6)	148
C2—H2AO7 ^{iv}	0.99	2.54	3.096(5)	115
C13—H13AO3	0.99	2.59	3.232(5)	123
C13—H13BO1	0.99	2.59	3.338(5)	132
C14—H14BO2 ⁱⁱ	0.99	2.45	3.151(5)	127
C17—H17O1 ^v	0.95	2.49	3.311(5)	145
C18—H18O1 ^{vi}	0.95	2.59	3.295(4)	131

Table S2. Selected hydrogen bond distances and angles in the crystal structure 1

Symmetry codes: ⁱ x,1/2-y,-1/2+z; ⁱⁱ -x,-1/2+y,1/2-z; ⁱⁱⁱ 1-x,1/2+y,1/2-z; ^{iv} 1-x,1-y,1-z; ^vx,3/2-y,-1/2+z; ^{vi} -x,1-y,-z

Figure S2. Packing arrangement of 1 viewing from the crystallographic directions a, b and c

Figure S3. Conformational comparison of the metal complex cation $[Cu(trenpyz)]^{2+}$ in crystal structure 1 (pink), with $[Cu(H_2L)]^+$ in OREGAU [OREGAU] (coloured by element). Selected bond lengths (Å) and angles ($^{\circ}$ for OREGAU: Cu1-N2 2.028(2), Cu1-N1 2.042(3), Cu1-N3 2.058(2), Cu1-N4 2.205(2), N2-Cu1-N1 85.62(9), N2-Cu1-N4 84.52(9), N2-Cu1-N3 85.60(9), N1-Cu1-N3 134.9(1), N3-Cu1-N4 116.15(9), N1-Cu1-N4 106.9(1), O1-Cu1-N2 175.13(8).

Figure S4. Hydrogen bond connections between the $[Cu(trenpyz)]^{2+}$ complex cation and perchlorate

Figure S5 Individual molar Vis/NIR spectra of the mononuclear copper(II)-trenpyz complexes

Figure S6 Individual molar Vis/NIR spectra of the trinuclear copper(II)-trenpyz complexes

Figure S7 Effect of pH on the Vis/NIR spectra of the copper(II)-trenpyz 3:2 systems in 50% EtOH-H₂O, insert shows the change of absorbances at 420 nm (T = 298 K, I = 0.1 M NaCl, $[Cu²⁺]_{tot} = 2.881 \text{ mM}, [trenpyz] = 1.938 \text{ mM}, \text{ pH} = 2.0-11.3)$

Figure S8 Individual molar Vis/NIR spectra of the trinuclear copper(II)-trenpyz complexes in 50% EtOH-H₂O

Figure S9. UV-Vis spectra of Cu(II)-L 3/2 system as a function of H₂dtbc concentration under anaerobic conditions in 50% EtOH-H₂O at pH = 7.2 ($c_{Cu_3H_xL_2} = 3.358 \times 10^{-4}$ M). Insert shows the formation of dtbq (measured at 400 nm) as a function of H₂dtbc concentration.

Figure S10. Cyclic voltammogram of the copper(II)-trenpyz 3/2 system in 50 % EtOH-H₂O at pH = 7.2 ([L] = 1.24 mM, [Cu²⁺] = 1.86 mM)

Figure S11. Rate constants of H₂dtbc oxidation promoted by the copper(II)-trenpyz 3/2 system in 50% EtOH-H₂O as a function of the concentration of trinuclear complexes (T = 298 K, [H₂dtbc]₀ = 2 mM)

Figure S12. Rate constants of H₂dtbc oxidation promoted by the copper(II)-trenpyz 3/2 system in 50% EtOH-H₂O as a function of the concentration of dissolved dioxygen (T = 298 K, $[Cu^{2+}]_{tot} = 75 \ \mu\text{M}, [L] = 50 \ \mu\text{M}, [H_2dtbc]_0 = 2 \ \text{mM}$)

Figure S13. H₂O₂ (green square) and dtbq (red triangle) formation during H₂dtbc oxidation promoted by the copper(II)-trenpyz 3/2 system in aqueous solution at pH = 8.1 (T = 298 K, I = 0.1 M, [L]_{tot} = 6.84×10⁻⁵ M, [Cu²⁺]_{tot} = 1.02×10⁻⁴ M, c_{H₂dtbc,0} = 0.1 mM).

Figure S14. Time dependence of EPR spectra detected at room temperature (A) and at 77 K (B) of the Cu(II)-trenpyz 3/2 system during the oxidation of H₂dtbc under aerobic conditions (pH = 7.2, [Cu(II)] = 1.5 mM, $C_{H_2dtbc} = 5$ mM). The insert in figure A shows the timed dependence of calculated EPR intensity. Note, that the spectra were recorded in a capillary, therefore the dissolution of oxygen into the solution was rather limited.