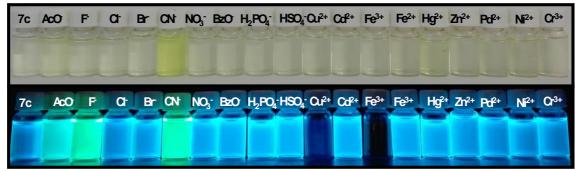
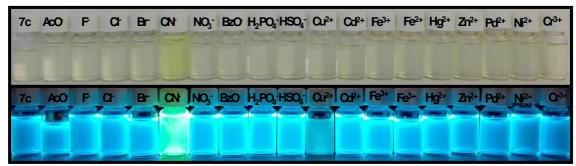
Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Fluorescent phenanthroimidazoles functionalized with heterocyclic spacers: synthesis, optical chemosensory ability and Two-Photon Absorption (TPA) properties


Rosa Cristina M. Ferreira, Susana P. G. Costa, Hugo Gonçalves, Michael Belsley, and Maria Manuela M. Raposo

New Journal of Chemistry


Electronic Supplementary Information

Photos of colour changes of compound 7c after interaction with anions p. 1 and cations in ACN and ACN/H₂O (95:5)
 Quenching efficiency for compounds 5b-c, 6a and 7a-c in the presence of p. 1 different ions
 Proposed mode of interaction of compound 7a with F-, Cu²⁺ and Fe³⁺ p. 4

1. Photos of colour changes of compound 7c after interaction with anions and cations in ACN and ACN/ H_2O (95:5)

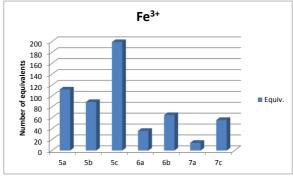


Figure S1: Colour changes and fluorescence changes of compound **7c** (10^{-4} M in ACN) in the presence of 50 equiv. of AcO⁻, F⁻, Cl⁻, Br⁻, CN⁻, NO₃⁻, BzO⁻, H₂PO₄⁻, HSO₄⁻, Cu²⁺, Cd²⁺, Fe³⁺, Fe²⁺, Hg²⁺, Zn²⁺, Pd²⁺, Ni²⁺ and Cr³⁺ (in the form of tetrafluorborate or perchlorate salts).

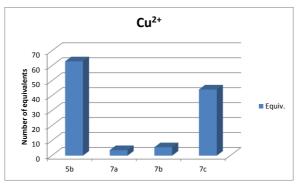
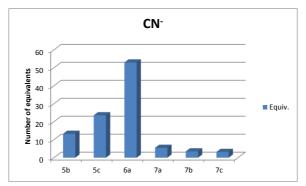
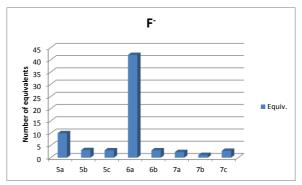
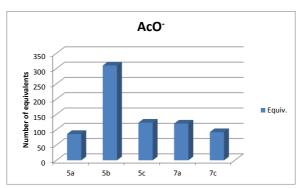
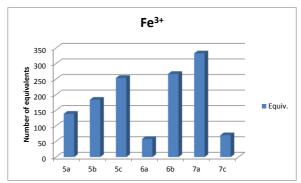


Figure S2: Colour changes and fluorescence changes of compound **7c** (10^{-4} M in ACN/H₂O (95:05)) in the presence of 50 equiv. of AcO⁻, F⁻, Cl⁻, Br⁻, CN⁻, NO₃⁻, BzO⁻, H₂PO₄⁻, HSO₄⁻, Cu²⁺, Cd²⁺, Fe³⁺, Fe²⁺, Hg²⁺, Zn²⁺, Pd²⁺, Ni²⁺ and Cr³⁺ (in the form of tetrafluorborate or perchlorate salts).


2. Quenching efficiency for compounds 5a-c, 6a-b and 7a-c in the presence of different ions


Figure S3: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN solution in the presence of Fe^{3+} .


Figure S4: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN solution in the presence of Cu^{2+} .


Figure S5: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN solution in the presence of CN^- .

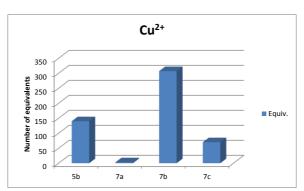

Figure S6: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN solution in the presence of F^- .

Figure S7: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN solution in the presence of AcO⁻.

Figure S8: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN/ H_2O (95:5) solution in the presence of Fe³⁺.

Figure S9: Number of equivalents necessary to quench at least 90% of the initial fluorescence intensity of each phenanthroimidazole in ACN/ H_2O (95:5) solution in the presence of Cu^{2+} .

3. Proposed mode of interaction of compound 7a with $F^{\text{-}}$, Cu^{2+} and Fe^{3+}

$$M = Cu^{2+} \text{ or } Fe^{3+}$$

Figure S10: Proposed structures of the complexes between compound **7a** (as representative example of the ligand) and F^- (as representative of anions), Cu^{2+} and Fe^{3+} (as representatives of cations).