## Electronic Supporting Information

## Three dimensional molybdenum oxide/polyaniline hybrid nanosheet

## networks with outstanding optical and electrochemical properties

Kun Zhang,<sup>a</sup> Yuemin Wang,<sup>b</sup> Xiaoxuan Ma,<sup>a</sup> Hangchuan Zhang,<sup>b</sup> Shuai Hou,<sup>b</sup>

Jiupeng Zhao, \*a Xingang Li,<sup>c</sup> Liangsheng Qiang<sup>a</sup> and Yao Li \*<sup>b</sup>



Fig. S1 TEM image of 3D MoO<sub>3</sub> nanosheet networks and corresponding EDS mappings.







Fig. S2 (a) XPS Mo 3d spectrum of 3D MoO<sub>3</sub> nanosheet networks, (b) XPS O 1s spectrum of 3D MoO<sub>3</sub> nanosheet networks, (c) XPS C 1s spectrum of 3D MoO<sub>3</sub>/PANI hybrid nanosheet networks and (d) XPS O 1s spectrum of 3D MoO<sub>3</sub>/PANI hybrid nanosheet networks.



Fig. S3 Illustration of the dual electrochromic mechanism of 3D MoO<sub>3</sub>/PANI hybrid nanosheet networks film.

Leucoemeraldine base



Emeraldine salt



## Emeraldine base



Pernigraniline salt



Fig. S4 The main molecular structures of LB, ES, EB, and PS.



Fig. S5 Transmittance spectra for 3D MoO<sub>3</sub> nanosheet networks film under different voltages (inset of photos at 0 and -1.0 V).



Fig. S6 Electrochromic response time of 3D  $MoO_3$  nanosheet networks film at 671 nm by continuously stepping voltage between -0.6 and 0.2 V.



Fig. S7 Electrochromic response time of PANI film at 592 nm by continuously stepping voltage between -0.2 and 0.8 V.



Fig. S8 The cycling performance and coulombic efficiency of 3D MoO<sub>3</sub>/PANI hybrid nanosheet networks film at a current density of 1 A  $g^{-1}$ .