## Facile synthesis of perovskite-type NdNiO<sub>3</sub> nanoparticles for effective

## electrochemical non-enzymatic glucose biosensor

Mani Sivakumar, Karuppiah Pandi, Shen-Ming Chen\*, Yi-Hui Cheng and Mani Sakthivel,

\*Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
Tel: (886)-2-27017147; Fax: (886)-2-27025238
E-mail: <u>smchen78@ms15.hinet.net</u> (S.M. Chen)

\*Corresponding author: Shen-Ming Chen Tel: (886)-2-27017147; Fax: (886)-2-27025238 E-mail: <u>smchen78@ms15.hinet.net</u> (S.M. Chen)



**Figure S1** FE-SEM affiliated EDX spectra for corresponding samples (A, B) NaNiO<sub>3</sub>-1, (C, D) NaNiO<sub>3</sub>-2 and (E, F) NaNiO<sub>3</sub>-3.



**Figure S2** FE-SEM images of NdNiO<sub>3</sub>-2 (A), elemental mapping display of the Nd (B), Ni (C) and O (D).



Figure S3 (A) core-level spectra of Nd state. (B) core-level spectra of the  $Ni^{3+}$  state. (C) core-level spectra of O1s state.



Figure S4 Capacitive current of NdNiO<sub>3</sub>-1/GCE (a), NdNiO<sub>3</sub>-2/GCE (b) and NdNiO<sub>3</sub>-3/GCE (c) in  $N_2$  standard 0.1 M NaOH at a scan rate of 50 mVs<sup>-1</sup>.



**Figure S5** Amperometry profiles of stability tested in the presences of glucose. Electrolyte: 0.1 M NaOH aqueous solution; rpm: 1200; applied potential: +0.54 V.|



Figure S6 The storage stability studies of 15 days for the CV curve to the corresponding response current (%) vs. days.

 Table S1. Determination of glucose in serum sample using Amperometric.

| Real samples | Analyte | Added (µM)                          | Found (µM)                 | Recovery (%)               |
|--------------|---------|-------------------------------------|----------------------------|----------------------------|
| Human serum  | Glucose | 10<br>100<br>30<br>200<br>50<br>300 | 101.37<br>203.48<br>306.05 | 101.37<br>101.74<br>102.02 |