Facile oxidative cyclization to access C2-quaternary 2-hydroxy-indolin-3-ones: Synthetic studies towards matemone
 Sai-Shuai Wen, ${ }^{\text {a, }+ \text { Zhao-Fang Zhou, }}{ }^{\text {a, }+}$ Jun-An Xiao, ${ }^{\text {b, }}{ }^{+}$Jun Li, ${ }^{\text {a HaoyueXiang, }}$, and HuaYang ${ }^{\text {a, } \text { * }}$
 ${ }^{a}$ College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.

${ }^{b}$ College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, Guangxi, P. R. China

E-mail: hyangchem@csu.edu.cn

Contents

\qquad

1. General Information S2
2. Experimental Procedures and characterization data S2-S12
3. NMR Spectra of new compounds ... 13 -s30
4. X-ray crystallographic data of compound 11 ….............................. 31

1. General information

Unless otherwise noted, all the reagents were purchased from commercial suppliers and used without further purification. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz . The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR data were collected at 100 MHz with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Infrared spectra (IR) were measured by FT-IR apparatus. High resolution mass spectroscopy (HRMS) was recorded on TOF MS ES+ mass spectrometerand acetonitrile and dichloromethane were used to dissolve the sample. Column chromatography was carried out on aluminum oxide (200-300 mesh).

2. Experimental procedures and characterization data

General Procedure for Synthesis of Diketone 2b, 2d and 2e:

To a solution of 2-amino-acetophenone derivatives (10.0 mmol) in THF (40 mL) was added $\mathrm{NaH}(1.50 \mathrm{~g}, 60 \%$ dispersion in mineral oil) and the mixture was stirred at r.t. for 10 min . To the mixture was added ester (20.0 mmol) dropwise, and the reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 4 hours. Then, the mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with water, acidified with 3 NHCl , and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by silica gel column chromatography (ethyl acetate $/$ petroleum ether $=19: 1$) to provide the desired diketone 2.

Diketone 2b: Orange solid ($3.39 \mathrm{~g}, 83 \%$ yield); m.p. $144-146^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v$ 3063, 1573, 1494, 1163, $921 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$, enolform) δ (ppm) $15.44(\mathrm{~s}, 1 \mathrm{H}), 10.78(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.4$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{td}$,
$J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ $188.2,181.7,139.0,134.6,131.6,130.1,129.2,124.8,124.7,124.5,124.1,122.7,122.5,118.7$, $118.5,115.9,92.5,38.5,16.8$; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$ 408.1270, found 408.1290 .

Diketone 2d: Purple solid (3.48 g, 97\% yield); m.p. $70-71^{\circ} \mathrm{C}$; IR (KBr) v 3063,
 2962, 1603, 1576, $1153 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, enolform) δ (ppm) $15.46(\mathrm{~s}, 1 \mathrm{H}), 10.75(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{td}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H})$, 2.28-2.37 (m, 7H), 1.64-1.71 (m, 4H), 0.91-1.01 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ 193.2, 188.84, 143.7, 139.2, 136.4, 133.7, 129.6, 129.3, 124.0, 123.4, 121.1, 97.0, 38.7, 21.5, 19.8, 13.7; HR-MS (TOF-ES+) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{SNa} 382.1089$, found 382.1106 .

Diketone 2e: Yellow solid (3.42 g, 87\% yield); m.p. $164-165^{\circ} \mathrm{C}$; IR (KBr) v 3196, $1489,1158,909,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, enol form) $\delta(\mathrm{ppm}) 16.00(\mathrm{~s}$, $1 \mathrm{H}), 10.44(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.71(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.16(\mathrm{~m}$, 3H), $6.46(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 193.4,179.8,143.8,138.6$, $136.0,133.6,133.5,132.8,129.6,129.1,128.9,127.2,126.9,125.7,124.1,122.4,94.6,21.3$; HRMS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S} 394.1113$, found 394.1111.

General Procedure of Oxidative Cyclization for the synthesis of 3a-3e:

To a solution of 1,3-dicarbonyl substrate (0.5 mmol) in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added ceric ammonium nitrate (CAN, $548 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, $94 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv.). And the mixture was stirred at r.t. for the given time. After completion of the reaction monitored by TLC, the mixture was filtered and the filtrate was concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1: 9-1: 5$) to provide indolin-3-one 3a-3e.

2-Acetyl-2-hydroxy-1-tosylindolin-3-one 3a: Yellow solid (63% yield); m.p. $89-90^{\circ} \mathrm{C}$;
IR (KBr) v 3587, 3473, 3089, 1748, 1602, 1354, $1153 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$
$\mathrm{MHz}) \delta(\mathrm{ppm}) 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}$, 1H), $5.78(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 197.6,191.6$, $152.6,145.2,138.6,135.7,129.8,128.1,125.9,124.2,120.8,114.2,91.8,23.2,21.7$; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{SNa} 368.0569$, found 368.0567.
 Indolin-3-one 3b: Amber oil (57\% yield); IR (KBr) v 2967, 1743, 1601, 1359, 1164 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.64-7.73 (m, $3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.98(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta(\mathrm{ppm}) 200.2,191.9,152.6,145.2,138.5,135.5,129.8,128.3,125.8,124.1,120.8$, 114.1, 91.6, 37.7, 16.9, 13.4; HR-MS (TOF-ES+) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}$ 396.0882, found 396.0873 .

Indolin-3-one3c: Yellow solid (67% yield); m.p. $143-145^{\circ} \mathrm{C}$; IR (KBr) v 3390, 1748, 1599, 1464, 1342, $951 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.99(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 7.11-7.18 (m, 6H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 198.7,191.0,152.2,145.3,138.2,135.4,130.8,130.5$, $129.8,128.5,128.2,127.5,125.8,124.0,120.7,114.0,91.6,43.5,21.7 ;$ HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa} 444.0882$, found 444.0883.

Indolin-3-one 3d: White solid (70\% yield); m.p. 157-159 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v 3352,1735$, $1688,1599,1493 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.47$ $(\mathrm{s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 191.6,190.9,152.0,145.2,138.4$, $135.6,134.6,131.6,129.8,129.1,129.0,128.3,126.2,124.4,120.7,114.5,90.3,21.6$; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{SNa} 430.0725$, found 430.0714 .

Indolin-3-one 3e: White solid (99\% yield); m.p. $141-142^{\circ} \mathrm{C}$; IR (KBr) v 3402,
 $1762,1729,1599,1463,1145 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 8.01(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.17(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.50(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.36(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 191.2,167.2,152.3,145.1,138.3,136.0,129.9,128.0$,
$125.8,123.8,120.1,113.7,87.2,64.5,21.7,13.9$; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{SNa} 398.0674$, found 398.0658 .

Synthethesis for the Core Structure of Metamone:

4-Bromoisatoic anhydride5was prepared as the reported procedure ${ }^{1}$: To a solution of 4bromoanthranilic acid $(4,2.16 \mathrm{~g}, 10.0 \mathrm{mmol})$ in 50 mL of THF was added triphosgene $(1.00 \mathrm{~g}, 3.4$ mmol). The mixture was heated at $50^{\circ} \mathrm{C}$ for 3 hours. Then the reaction mixture was allowed to cool to room temperature. The solution was concentrated in vacuo and n-hexane was added. The precipitate was filtered, washed by n-hexane and dried to give the crude product as a tan powder $(2.23 \mathrm{~g}, 92 \%$ yield), which was used without further purification.

2-Amino-4-bromo- N-methoxy- N-methylbenzamide $\mathbf{6}$ was prepared as the reported procedure ${ }^{2}:$ To a solution of N, O-dimethylhydroxylamine hydrochloride ($0.91 \mathrm{~g}, 9.3 \mathrm{mmol}$) in 12 mL of 90% aqueous ethanol was added triethylamine ($0.94 \mathrm{~g}, 9.3 \mathrm{mmol}$). After 10 min of stirring at room temperature, isatoic anhydride $(1.50 \mathrm{~g}, 6.2 \mathrm{mmol})$ was added in portions. Then the mixture was refluxed for 2 hours and poured into 20 mL of mixture of ice and saturated sodium bicarbonate. And ethanol was removed in vacuo, and the remains were extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$, and the organic layers werecombined, washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude product as an amber oil ($1.03 \mathrm{~g}, 64 \%$ yield). The crude product was also used without further purification.

A solution of $6(0.78 \mathrm{~g}, 3.0 \mathrm{mmol}), \mathrm{TsCl}(1.72 \mathrm{~g}, 9.0 \mathrm{mmol}, 3.0$ equiv.) and pyridine ($145 \mu \mathrm{~L}$,
$1.8 \mathrm{mmol}, 0.6$ equiv.) in $\mathrm{DCM}(40 \mathrm{~mL})$ was stirred overnight. Then, the mixture was washed with saturated copper sulfate solution $(3 \times 40 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and the residue was purified viasilica gel column chromatography (ethyl acetate/petroleum ether $=1: 19$) to provide tosyl-protected product 7 as colorless oil ($1.15 \mathrm{~g}, 93 \%$ yield). IR (KBr) v3200, 1617, 1584, 1488, 1163, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 9.10(b r \mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 167.2,144.0,138.3,136.5,130.5$, 129.7, 127.3, 126.7, 125.9, 125.2, 121.2, 61.0, 33.4, 21.5; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SBrNa} 434.9990$, found 434.9990 .

A solution of crude product $6(0.78 \mathrm{~g}, 3.0 \mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(1.96 \mathrm{~g}, 9.0 \mathrm{mmol}, 3.0$ equiv.) and $\mathrm{NaOH}\left(0.24 \mathrm{~g}, 6.0 \mathrm{mmol}, 2.0\right.$ equiv.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,6 \mathrm{~mL})$ was stirred at 60° Covernight. After the completion, the mixture was acidified by $\mathrm{HCl}(3 \mathrm{~N})$ andwashed with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The collected organic layer was washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified viasilica gel column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=$ 1:9) to provide Boc-protected product 13as yellowish oil ($0.80 \mathrm{~g}, 74 \%$ yield). IR (KBr) $v 3354$, 1734, 1627, 1585, 1569, 1505, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.49$ $(\mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 168.2,152.5,139.7,130.1,126.0,124.4,122.8,118.7$, 81.0, 61.5, 34.0, 28.3; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BrNa}$ 381.0426, found 381.0442.

To a solution of $\mathbf{1 3}(2.4 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added 2.4 mL of 3 M methylmagnesiumiodide (in diethyl ether) by syringe at $0^{\circ} \mathrm{C}$. After the addition, the mixture was
allowed to warm to room temperature and be stirred overnight. When the reaction was completed as monitored by TLC, the mixture was quenched with saturated ammonium chloride solution (30 $\mathrm{mL})$, extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, and the organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. And the residue was purified by silica gel column chromatography (EtOAc/petroleum ether $=1: 9-1: 3)$ to provide 4^{\prime}-Bromo- $2^{\prime}-(N$-tert-butyloxylcarbonyl-aminoacetophenone(14) as colorless oil ($0.66 \mathrm{~g}, 88 \%$ yield); IR (KBr) \vee 3448, 2981, 1664, 1246, 1158, 743cm-1; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 11.00(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 201.5,152.8,142.8,132.7,130.1,124.1,122.0,119.8,81.0$, 28.5, 28.2.

Experimental Procedure of Acylation:

To a solution of protected 2^{\prime}-amino-4'-bromoacetophenone (2.0 mmol) in THF (10 mL) was added $\mathrm{NaH}(0.40 \mathrm{~g}, 60 \%$ dispersion in mineral oil $)$ and the mixture was stirred at r.t. for 10 min . To the mixture was added diethyl oxalate $(4.0 \mathrm{mmol})$ dropwise, and the reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 4 hours. After completion, the mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with water, acidified with 3 NHCl , and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentratedin vacuo, and purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1: 19$) to provide the desired ketoester.

[^0]

Ketoester 15:White solid(0.54 g, 70\% yield);m.p.: 69-70${ }^{\circ} \mathrm{C}$;IR (KBr) v2984, 1734, $1656,1571,1511,1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 10.81(\mathrm{~s}, 1 \mathrm{H})$, $8.79(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ 195.6, 167.1, 152.7, 143.4, 132.3, 131.1, 124.3, 122.2, 118.8, 81.3, 61.8, 47.8, 28.2, 14.1; HR-MS (TOF-ES +) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{BrNa} 408.0423$, found 408.0419.

Experimental Procedure for Oxidative Cyclization:

To a solution of ketoester (0.5 mmol) in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added ceric ammonium nitrate (548 $\mathrm{mg}, 1.0 \mathrm{mmol}$) and 2,2,6,6-tetramethylpiperidinooxy ($94 \mathrm{mg}, 0.6 \mathrm{mmol}$). The mixture was stirred at r.t. for the given time. Then, the solvent was removed in vacuo and the residue was purified via silica gel column chromatography (ethyl acetate/petroleum ether $=1: 19-1: 9$) to provide the corresponding indolin-3-one.

Indolin-3-one10:Pink solid (210 mg, 92\% yield);m.p.: 140-141 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) ~ v 3425$, $1757,1598,1364,1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.97(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}$, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.48(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 190.1,166.8,152.7,145.4,135.7,134.0,130.0,127.9,127.5$, 126.6, 119.0, 117.2, 87.6, 64.6, 21.7, 13.9; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{SBrNa} 475.9779$, found 475.9756 .

Indolin-3-one16:Colorless oil (194 mg, 97\% yield); $\operatorname{IR}(\mathrm{KBr}) \vee 3450,1726$,
 1633, 1429, 1263, $570 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 8.28(\mathrm{~s}, 1 \mathrm{H})$, $7.93(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.24(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}$, 9H), $1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 192.4,165.7,149.7,133.2$, $127.5,126.9,119.4,118.9,87.7,84.1,62.6,28.0,14.4 ;$ HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{BrNa} 422.0215$, found 422.0255 .

Experimental Procedure of Methylation ${ }^{3}$:

To a solution of protected indolin-3-one $(0.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DMF}(2: 1,3.6 \mathrm{~mL})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(570 \mathrm{mg}, 1.75 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}(48 \mu \mathrm{~L}, 1.75 \mathrm{mmol})$. The reaction was stirred at room temperature for 24 hours. After completion, the solvent was removed in vacuo and the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=-1: 9-1: 5$) to provide the desired product.

Indolin-3-one11: White solid (218 mg, 93\% yield);m.p.: 161-162${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}$) $v 2969,1725,1596,1425,1098,948 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$ $8.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.32(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.38(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 190.0,163.6,153.7,145.5,136.1,134.3,130.0$, $127.6,127.3,126.1,119.6,117.2,93.3,63.2,52.8,21.7,13.9 ;$ HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{SBrNa} 489.9936$, found 489.9921.

Indolin-3-one17: Colorless oil (163 mg, 79\% yield); $\mathrm{IR}(\mathrm{KBr})$ v2981, 1777, $1725,1600,1428,1354,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 8.49(\mathrm{~s}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}$, 9H), $1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 191.3,163.8,154.3,149.8$, 134.1, 127.3, 125.4, 119.94, 119.88, 91.4, 84.3, 62.8, 52.2, 28.0, 14.0; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{BrNa} 436.0372$, found 436.0373.

A solution of Boc-protected indolin-3-one $17(124 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{DCM}(6 \mathrm{~mL})$ was added trifluoroacetic acid ($225 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature overnight. After completion, the mixture was allowed to cool to $0^{\circ} \mathrm{C}$, acidified by aqueous ammonia, and washed with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed
with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentratedin vacuo, and purified via silica gel column chromatography (ethyl acetate/petroleum ether $=1: 9-1: 5$) to provide deprotectedindolin-3-one12as yellow oil (70 mg, 74\% yield).IR (KBr) v3335, 1751, 1716, 1607, 1451, $914 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.07$ $(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 193.0,166.0,160.9,134.0,126.2,124.6,118.4,116.4,91.7$, 63.4, 52.1, 14.0; HR-MS (TOF-ES+) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{BrNa} 335.9847$, found 335.9846.

Efforts to the Reduction ofEster to Matemone

Entry	Conditions	Result
1	1.5 eq. NaBH_{4}	NR
2	1.5 eq. LiAlH_{4}	ND
3	3.0 eq. LiAlH_{4}	ND
4	3.0 eq. LiAlH_{4} reflux	ND
5	10.0 eq. LiAlH_{4}	Complex
6	8.0 eq. LiAlH_{4}	Complex
7	1.5 eq. $\mathrm{NaBH}_{4} / 3.0$ eq. CaCl_{2}	Complex
8	1.5 eq. $\mathrm{NaBH}_{4} / 3.0$ eq. $\mathrm{CaCl}_{2}, 0^{\circ} \mathrm{C}$	ND
9	1.5 eq. $\mathrm{BH}_{3}-\mathrm{THF}$	ND
10	5.0 eq. $\mathrm{BH}_{3}-\mathrm{THF}$	ND

Entry	Condition a	Condition b	result
1	1.5 eq. NaBH_{4}	TFA	ND
2	1.5 eq. LiAlH_{4}	--	Complex
3	1.5 eq. $\mathrm{BH}_{3}-\mathrm{THF}$	--	NR
4	5.0 eq. $\mathrm{BH}_{3}-\mathrm{THF}$	--	trace

Strategy

Removal of Tosyl Group:

[1] Darras, F. H.; Kling, B.; Heilmann, J.; Decker, M. ACS Med. Chem. Lett.2012, 3, 914-919
[2] Frye, S. V.; Johnson, M. C.; Valvano, N. L. J. Org. Chem.1991, 56, 3750-3752.
[3] Ren, Q.; Huang, J.; Wang, L.; Li, W.; Liu, H.; Jiang, X.; Wang, J. ACS Catalysis2012, 12, 2622-2625.

3. NMR Spectra of New Compounds

SV-252

SV-208

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

SV-231

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

 lijncrararas

SV-275

日etisen

Current Data Parameter
NAME
EXPNO

F2-Acquisition Parameters	
Date_	
Time	14.24
INSTRUM	
PROBHD 5	5 mm PABBO BB-
PULPROG	
TD	65536
Solvent	CDC13
	32
DS	
SWH	${ }^{8223.685 ~ H z}$
FIDRES	0.125483 Hz
	3.9846387 sec
${ }^{\text {RG }}$	198.33
DW	60.800
DE	6.50
${ }^{\text {TE }}$	298.0
D1	1.00000000 sec
${ }_{\text {PLLI }}$	9.72999954 W
SFO1	400.1324710 MHz
SSB	
${ }_{\text {LB }}^{\text {LB }}$	0.30 Hz
${ }_{\text {PC }}$	1.00

SV-239
Cur

SV-260

(

SV-320

SV-262

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

SV-327-2

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

\circ
\vdots
i
Current Data Parameters
NNME $03-12-2016$
EXPNO
PROCNO

$\left.\right|_{\text {- }} ^{\substack{\infty \\ \infty}}$

SV-314

SV-318

4. X-ray crystallographic data of compound11

X-ray crystal of $\mathbf{1 1}$ (showing the thermal ellipsoids at 20\%probability level).

Compound 11		
Bond precision: $\mathrm{C}-\mathrm{C}=0.0041 \mathrm{~A}$		Wavelength $=0.71073$
$\mathrm{a}=10.6287$	$\mathrm{~b}=12.6972$	
alpha $=90$	beta $=96.572$	$\mathrm{c}=15.0254$
Cell setting: Monoclinic	gamma $=90$	
Cell volume $=2014.42$	Moiety formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{SO}_{3}$	
Data completeness $=0.994$	Space group: $\mathrm{P} 21 / \mathrm{c}$	
R (reflections) $=0.0362$	Theta(max) $=25.030$	
$\mathrm{~S}=1.052$	WR2(reflections) $=0.1058$	
Measurement device type: CCD area detector	Radiation type: MoK $\backslash \mathrm{a}$	
Structure solution: SHELXS-97	Measurement method: phi and omega scans	
Solution primary: direct	Structure refinement: SHELXL-97	
Solution hydrogens: geom	Solution secondary: difmap	

[^0]:

 Ketoester 9:Crimson oil ($0.62 \mathrm{~g}, 70 \%$ yield);IR (KBr) v2982, 1732, 1645, 1595, $1159 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 11.28(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=8.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}) 195.8,166.6,144.5,141.7,136.1,132.6,130.8,129.9,127.4,125.7$, 121.6, 119.6, 61.9, 47.1, 21.6, 14.0; HR-MS (TOF-ES+) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{SBrNa}$ 461.9987, found 462.0009 .

