Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information (ESI)

Nuclearity versus oxidation state in catalytic efficiency of Mn^{II/III} azo Schiff base complexes: Computational study on supramolecular interactions and phenoxazinone synthase like activity

Saikat Banerjee,^a Paula Brandão,^b Antonio Bauzá,^c Antonio Frontera,^{*c} Miquel Barceló-Oliver^c, Anangamohan Panja,^d and Amrita Saha,^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata- 700032, India.

E-mail: amritasahachemju@gmail.com; asaha@chemistry.jdvu.ac.in; Tel. +91-33-2457294.

^bDepartamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

^cDepartament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma (Baleares), Spain.

E-mail: toni.frontera@uib.es.

^d Postgraduate Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.

CONTENTS:

Fig. S1: ¹ HNMR Spectrum of the ligand, H_2L^1	S2
Fig. S2: ¹ HNMR Spectrum of the ligand, H_2L^2	S3
Fig.S3: FTIR spectrum of H_2L^1 showing sharp peak at 1610 cm ⁻¹	for C=N
bond	
Fig.S4: FTIR spectrum of H_2L^2 showing sharp peak at 1616 cm ⁻¹	for C=N
bond	
Fig.S5: FTIR spectrum of complex 1 showing sharp peak at 1625 cm ⁻	¹ for C=N
bond	
Fig. S6: FTIR spectrum of complex 2 showing sharp peaks at 1622 cm ⁻¹ and 2070 c	m ⁻¹ for C=N
bond and $\mu_{1,1}$ azido bridging, respectivelyS7	
Fig. S7: View of the coordination environment of complex 2	
Fig. S8: ESI mass spectrum of complex 1	

Fig. S1. ¹HNMR(CDCl₃, 300 MHz) spectrum of H_2L^1 .

Fig. S2. ¹HNMR(CDCl₃, 300 MHz) spectrum of H_2L^2 .

Fig. S3. FTIR spectrum of H_2L^1 .

Fig. S4. FTIR spectrum of H_2L^2 .

Fig. S5. FTIR spectrum of complex 1.

Fig. S6. FTIR spectrum of complex 2.

Fig. S7. View of the coordination environment of the Zn(II) and Mn(II) in complex 2.

Fig.S8. ESI mass spectrum of complex 1.