Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Ruthenium Arene Complexes with Triphenylphosphane Ligands: Cytotoxic Activity Towards Pancreatic Cancer Cells, Interaction with Model Proteins, and Critical Effect of Ethacrynic Acid Substitution

Lorenzo Biancalana,^a Alessandro Pratesi,^b Federica Chiellini,^a Stefano Zacchini,^c Tiziana

Funaioli,^{a,*} Chiara Gabbiani,^{a,*} Fabio Marchetti,^{a,*}

^a Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.

^b MetMed, Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.

^c Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

Supporting Information

Table of contents

Synthesis and characterization of phosphane ligands and phosphane oxides	S2-S5
Table S1. Comparison of selected IR and NMR data for complexes 1-5 and related compounds	S6
Figure S1, Table S2. X-ray structure of 1 and related bonding parameters	S8
Figure S2. IR and UV-Vis spectra during monoelectronic oxidation of 1, 3 and 4	S8
Table S3. Comparison of IR and UV-Vis absorptions for complexes 1, 3, 4 andtheir oxidised species	S9
Stability studies, Schemes S1-S4 and Tables S4-S7	S10-S15
Figure S3. ESI–MS spectra of lysozyme incubated with complexes 1, 3, 4	S16

Synthesis and characterization of phosphane ligands and phosphane oxides.

Spectroscopic characterization of PPh₂(4-C₆H₄CO₂H) and PPh₂(2-C₆H₄CO₂H).

Chart S1. Structures of $PPh_2(4-C_6H_4CO_2H)$ (left) and $PPh_2(2-C_6H_4CO_2H)$ (right) (numbering refers to carbon atoms).

*PPh*₂(4-*C*₆*H*₄*CO*₂*H*). Colourless crystalline solid. IR (solid state): $\tilde{v}/cm^{-1} = 3059w$, 2998w, 2725w, 2551w, 1684s ($v_{C=O}$), 1595m, 1583m-sh, 1557m, 1478m, 1431m, 1422m, 1394m, 1317s, 1296s, 1277m-sh, 1184m, 1132w, 1115w, 1085m, 1068w, 1027w, 1017m, 999w, 939m-br, 853m, 816m, 764m, 745s, 694s. ¹H NMR (CDCl₃): δ /ppm = 8.03 (d, ³*J*_{*HH*} = 7.5 Hz, 2H, C3-H), 7.39–7.32 (m, 12H, Ph₂P + C4-H), 6.78 (s, 1H, OH). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 171.5 (C1), 136.0 (m, C6), 134.2 (d, ²*J*_{CP} = 19.8 Hz, C7), 133.3 (d, ²*J*_{CP} = 18.4 Hz, C4-H), 130.0 (d, ³*J*_{CP} = 6.3 Hz, C3-H), 129.4 (C9), 128.9 (d, ³*J*_{CP} = 7.0 Hz, C8). ³¹P{¹H} NMR (CDCl₃): δ /ppm = --4.7.

*PPh*₂(2-*C*₆*H*₄*CO*₂*H*). Crystalline colourless solid. IR (solid state): $\tilde{v}/cm^{-1} = 3068w$, 3050w, 3001w, 2872w, 2823w 2732w, 2690w, 2553w, 2522w, 1685s ($v_{C=O}$), 1584w, 1561m, 1467m, 1434m, 1410m, 1304m, 1271s, 1179w, 1147m, 1118m, 1090m, 1069w, 1057w, 1026w, 999w, 927m, 880w, 853w, 806m, 740s, 692s. ¹H NMR (CDCl₃): δ /ppm = 8.77 (br, 1H, OH), 8.20 (m, 1H, C3-H), 7.53–7.43 (m, 2H, C4-H + C5-H), 7.43–7.30 (m, 10H, PPh₂), 7.05 (t, *J* = 6.0 Hz, 1H, C6-H). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 171.4 (C1), 141.6 (d, ¹*J*_{CP} = 19.4 Hz, C7), 137.5 (m, C8), 134.4, 134.1 (d, ²*J*_{CP} = 20.5 Hz, C9), 133.0, 132.8, 131.8, 128.9 (C11), 128.6 (d, ³*J*_{CP} = 7.3 Hz, C10), 128.5 (C4). ³¹P{¹H} NMR (CDCl₃): δ /ppm = --4.3.

Synthesis of O=PPh₂(2-C₆H₄OH).¹

Chart S2. Structure of $O=PPh_2(2-C_6H_4OH)$ (numbering refers to carbon atoms).

A solution of PPh₂(2-C₆H₄OH) (100 mg, 0.359 mmol) and H₂O₂ (30% *w/w* in H₂O, 0.10 mL, 0.98 mmol) in THF (5 mL) was stirred at room temperature for 1.5 hours. The resulting colourless suspension was filtered and the solid was washed with Et₂O then dried under vacuum (40°C). Yield: 77 mg, 73%. The compound is soluble in DMSO, less soluble in CH₂Cl₂, acetone, insoluble in Et₂O, H₂O. ¹H NMR (DMSO-d₆): δ /ppm = 10.50 (s, 1H, OH), 7.65 (dd, ³*J*_{HP} = 12.1 Hz, ³*J*_{HH} = 7.3 Hz, 4H, C8-H), 7.61–7.56 (m, 2H, C10-H), 7.55–7.49 (m, 5H, C5-H + C9-H), 7.45 (t, ³*J*_{HH} = 7.6 Hz, 1H, C3-H), 6.97 (t, ³*J*_{HH} = 6.9 Hz, 1H, C4-H), 6.88 (dd, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HP} = 6.1 Hz, 1H, C2-H). ³¹P{¹H} NMR (DMSO-d₆): δ /ppm = 27.3.

Attempted synthesis of O=PPh₂(2-C₆H₄OCO-EA), O=L1.

Via esterification of phosphane oxide. A solution of $O=PPh_2(2-C_6H_4OH)$ (52 mg, 0.18 mmol) and EA-CO₂H (53 mg, 0.18 mmol) in CH₂Cl₂ (6 mL) was treated with EDCI·HCl (44 mg, 0.23 mmol) and then with DMAP (6 mg, 0.05 mmol). The resulting colourless solution was stirred at room

¹ L. Peng-He, H.-L. Mu, B.-X. Li, Y.-S. Li, J. Polym. Sci. A 2010, 48, 311-319.

temperature for 5 hours and the progress of reaction was monitored by ${}^{31}P$ spectroscopy. Volatiles were removed under vacuum and the resulting colourless residue was dissolved in CHCl₃ and extracted with H₂O (x3). The organic phase was then taken to dryness under vacuum, affording a colourless solid.

Via oxidation of phosphane ester. A suspension of **L1** (163 mg, 0.29 mmol) in MeCN (10 mL) was treated with H_2O_2 (30% w/w in H_2O , 0.10 mL, 0.98 mmol) and stirred at room temperature overnight, affording a colourless solution. The progress of reaction was monitored by ³¹P spectroscopy. Volatiles were then removed under vacuum affording a colourless solid.

During both reactions, the formation of compound $\mathbf{O}=\mathbf{L1}$ (³¹P{¹H} NMR (CDCl₃): $\delta/\text{ppm} = 27.6$) was observed, shortly followed by the appearance of a second product (³¹P{¹H} NMR (CDCl₃): $\delta/\text{ppm} = 39.4$) which became predominant. The solid material isolated was composed by a mixture of both species in variable ratios and $\mathbf{O}=\mathbf{L1}$ could not be purified by silica chromatography (decomposition in column).

Synthesis of O=PPh₂(4-C₆H₄CO₂CH₂CH₂OCO-EA), O=L2.

A solution of L2 (150 mg, 0.236 mmol) and H₂O₂ (30% *w/w* in H₂O, 30 μ L, 0.29 mmol) in THF (5 mL) was stirred at room temperature for 4.5 hours. The progress of reaction was checked by ³¹P NMR then volatiles were removed under vacuum. The resulting colorless oily residue was dissolved in few mL of CH₂Cl₂ and loaded on top of a silica column. The title compound was obtained as a colorless solid after elution with CH₂Cl₂:acetone 7:1 *v/v* and volatiles removal under vacuum (40°C). Yield: 60 mg, 39%. The compound is soluble in MeOH, acetone and chlorinated

solvents, insoluble in water. ¹H NMR (CDCl₃): δ /ppm = 8.09 (dd, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HP} = 1.8 Hz, 2H, C18-H), 7.77 (dd, ³*J*_{HP} = 11.3 Hz, ³*J*_{HH} = 8.2 Hz, 2H, C19-H), 7.65 (dd, ³*J*_{HP} = 12.0 Hz, ³*J*_{HH} = 7.4 Hz, 4H, C22-H), 7.60–7.54 (m, 2H, C24-H), 7.52–7.45 (m, 4H, C23-H), 7.09 (d, ³*J*_{HH} = 8.5 Hz, 1H, C11-H), 6.79 (d, ³*J*_{HH} = 8.5 Hz, 1H, C10-H), 5.91 (s, 1H, C4-H), 5.56 (s, 1H, C4-H²), 4.77 (s, 2H, C12-H), 4.56 (s, 4H, C14-H + C15-H), 2.46 (q, ³*J*_{HH} = 7.1 Hz, 1H, C2-H), 1.12 (t, ³*J*_{HH} = 7.4 Hz, 3H, C1-H). ³¹P{¹H} NMR (CDCl₃): δ /ppm = 28.4.

Table S1	Comparison	of salactad IF	and NMR	data for 1-4	and related com	nounds (E	$A_{-}CO_{-}H = \text{otheory}$	(bice acid)
Table ST.	Companson	of selected in			and related com	pounus (⊏/	$A - C O_2 \Pi = e I \Pi a C I$	ynic aciu).

Compound IR/NMR signal ^[a]	Ph ₂ P(4- C ₆ H ₄ CO ₂ H)	1	Ph₂P(2- C ₆ H₄CO₂H)	K[Ph ₂ P(2- C ₆ H ₄ CO ₂)]	2	EA-CO₂H	Ph₂P(2- C ₆ H₄OH)	L1	3	EA- CO ₂ (CH ₂) ₂ O H	L2 ^[b]	4	L3	5
v(C=O) / cm ⁻¹ C ₆ H ₄ -C(=O)O	1683s	1692s	1683s	1593s (v _{asym}) 1375s (v _{sym})	1604s (v _{asym}) 1328s (v _{sym})	-	-	-	-	-	1718s	1721m	-	-
v(C=O) / cm ⁻¹ EA-C(=O)O	-	-	-	-	-	1725s	-	1779m	1782s	1737s	1763m	1761m	-	-
v(C=O) ^[c] / cm ⁻¹ EA-C(=O)-C=C	-	-	-	-	-	1671s 1661s	-	1663s	1663m	1662s	1665m	1665m	-	-
v(C=C) ^[c] / cm ⁻¹ EA-C(=O)-C=C	-	-	-	-	-	1585s	-	1584s	1582m	1587m	1584m	1585m	-	-
¹ Η δ(OH) / ppm	6.78 (br)	6.30 (br)	8.77 (br)	-	-	7.75 (br)	6.35 (br)	-	-	1.83	-	-	-	-
¹³ C δ(EA-COO) / ppm	-	-	-	-	-	172.6	-	166.1	165.9	168.1	167.6	167.5	166.6	-
¹³ C δ(Ph-COO) / ppm	171.5	170.4	171.4	n.r.	172.3	-	-	-	-	-	166.1	165.7	167.7	-
³¹ Ρ δ / ppm	-4.7	25.3	-4.3	-8.2	30.5	-	-28.5	-16.9	25.0	-	-4.9	25.3	-4.5	26.0 (5a) 28.9 (5b)

[a] IR spectra in the solid state; NMR spectra in CDCl₃ solution, except K[PPh₂(2-C₆H₄CO₂)] (CD₃OD solution).

[b] IR and ¹³C NMR from reference [12a].

[c] IR spectrum of methyl vinyl ketone in CCl₄ solution: 1707vs and 1687vs (C=O), 1618m (C=C) [Bowles, A. J.; George, W. O.; Maddams, W. F. Conformations of some αβunsaturated carbonyl compounds. Part I. Infrared spectra of acraldehyde, crotonaldehyde, methyl vinyl ketone, and ethylideneacetone. *J. Chem. Soc. B*, **1969**, 810-818]. **Figure S1**. Molecular structure of $[(\eta^6-p-cymene)RuCl_2(\kappa P-PPh_2(4-C_6H_4CO_2H))]$, **1**. Displacement ellipsoids are at the 50% probability level. H-atoms, except H(1), have been omitted for clarity.

Table S2. Selected bond distances (Å) and angles (°) for 1.

Ru(1)-C(1)	2.228(3)	Ru(1)-C(2)	2.232(3)
Ru(1)-C(3)	2.228(3)	Ru(1)-C(4)	2.235(3)
Ru(1)-C(5)	2.213(3)	Ru(1)-C(6)	2.187(3)
Ru(1)-CI(1)	2.4061(7)	Ru(1)-CI(2)	2.4170(7)
Ru(1)-P(1)	2.3627(8)	C(104)-C(107)	1.492(4)
C(107)-O(1)	1.320(4))	C(107)-O(2)	1.217(4)
Cl(1)-Ru(1)-Cl(2)	90.17(3)	Cl(1)-Ru(1)-P(1)	83.79(3)
Cl(2)-Ru(1)-P(1)	90.42(3)	C(104)-C(107)-O(1)	114.5(3)
C(104)-C(107)-O(2)	122.8(3)	O(1)-C(107)-O(2)	122.7(3)

Figure S2. IR and UV-Vis spectral changes during monoelectronic oxidation of **1** (a, $2.0 \cdot 10^{-2}$ M), **3** (b, $2.0 \cdot 10^{-2}$ M) and **4** (c, $2.0 \cdot 10^{-2}$ M) in 0.2 M [^{*n*}Bu₄N][PF₆] CH₂Cl₂ solution recorded in an OTTLE cell. The initial spectrum, collected before the application of an oxidation potential, was used to calculate the differential absorbance spectra. Peak maxima/minima are referred to peak maxima in the original (\downarrow) and final (\uparrow) spectra.

Table S3. Comparison of IR and UV-Vis absorptions for 1,3 and 4 and their oxidised species (EA-CO₂H = ethacrynic acid).

Compound	1	1	1⁺	3	3	3⁺	4	4	4+
IR/UV-vis signal	solid state	CH ₂ Cl ₂ solution	CH_2CI_2 solution	solid state	CH ₂ Cl ₂ solution	CH_2CI_2 solution	solid state	CH ₂ Cl ₂ solution	CH_2Cl_2 solution
v(C=O) / cm ⁻¹ C ₆ H ₄ -C(=O)O	1692	1697	1703				1721	1725	1729
v(C=O) / cm ⁻¹ EA-C(=O)O				1782	1782	1793	1761	1765	1765
v(C=O) / cm ⁻¹ EA-C(=O)-C=C				1663	1667	1667	1665	1667	1667
v(C=C) / cm ⁻¹ EA-(C=O)-C=C				1582	1587	1588	1585	1587	1587
			315			314			317
Amou / DM	_	375	355	_	370	355	_	374	358
Amax / Titti	-	475	422	-	470	417	-	465	420
			515			512			518

Stability studies.

General procedure. Complexes **1–4** were dissolved in DMSO-d₆/D₂O 9:1 ν/ν (1.0 mL; [Ru] = 1·10⁻² mol-L⁻¹). An aliquot of the resulting solution (0.50 mL) was transferred into a NMR tube, maintained at 37°C for 72 hours and analyzed by ¹H and ³¹P{¹H} NMR spectroscopy as a function of time. Dimethyl sulfone (1·10⁻² mol-L⁻¹, 1:1 mol ratio vs. Ru) was used as a reference for ¹H NMR spectra (δ /ppm = 2.97 (s, 6H) in DMSO-d₆/D₂O 9:1 ν/ν). The remaining solution was diluted up to 4.0 mL with DMSO/H₂O 9:1 ν/ν (final [Ru] = 1.2·10⁻³ mol L⁻¹), maintained at 37 °C for 72 hours and analyzed by conductivity measurements and UV-Vis spectroscopy as a function of time. Parallel NMR analyses were carried out on DMSO-d₆/D₂O solutions prepared by the same procedure described above, and with the addition of NaCl (0.11 mol-L⁻¹). Molar conductivity (A_m) and molar absorbance (ϵ) values were calculated with reference to the starting material. Percent values of compounds in solution are based on ¹H NMR spectroscopy and refer to identified compounds only (indicated as "% *NMR*") or to dimethyl sulfone as internal standard (indicated as "% *NMR vs internal standard*").

Reference data. NMR spectra of the following compounds were recorded in DMSO-d₆/D₂O 9:1 ν/ν or CDCl₃ and used as reference for NMR assignments. *p*-cymene. ¹H NMR (DMSO-d₆:D₂O 9:1): $\delta/\text{ppm} = 7.12-7.03$ (m, 4H), 2.80 (hept, ³*J*_{HH} = 6.9 Hz, 1H), 2.23 (s, 3H), 1.15 (d, ³*J*_{HH} = 6.9 Hz, 6H). **EA-CO₂H.** ¹H NMR (DMSO-d₆:D₂O 9:1): $\delta/\text{ppm} = 7.24$ (d, ³*J*_{HH} = 8.6 Hz, 1H), 7.02 (d, ³*J*_{HH} = 8.7 Hz, 1H), 6.03 (s, 1H), 5.52 (s, 1H), 4.83 (s, 2H), 2.30 (q, ³*J*_{HH} = 7.1 Hz, 2H), 1.01 (t, ³*J*_{HH} = 7.4 Hz, 3H). **EA-CO₂(CH₂)₂OH**. ¹H NMR (DMSO-d₆:D₂O 9:1): $\delta/\text{ppm} = 7.29$ (d, ³*J*_{HH} = 8.6 Hz, 1H), 7.13 (d, ³*J*_{HH} = 8.6 Hz, 1H), 6.07 (s, 1H), 5.55 (s, 1H), 5.01 (s, 2H), 4.19–4.13 (m, 2H), 3.61–3.56 (m, 2H), 2.35 (q, ³*J*_{HH} = 7.3 Hz, 2H), 1.06 (t, ³*J*_{HH} = 7.3 Hz, 3H). **PPh₂(4-C₆H₄CO₂H)**. ¹H NMR (DMSO-d₆:D₂O 9:1): $\delta/\text{ppm} = 7.88$ (d, *J* = 7.8 Hz, 2H), 7.46–7.35 (m, 6H), 7.32–7.20 (m, 6H) ppm. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): $\delta/\text{ppm} = -6.9$ ppm. **O=PPh₂(4-C₆H₄CO₂H)**. ^{2 -1}H NMR (DMSO-d₆:D₂O 9:1): $\delta/\text{ppm} = -6.9$ ppm. **O=PPh₂(4-C₆H₄CO₂H)**. ^{2 -1}H

²Q. Lin, S. Unal, A. R. Fornof, R. S. Armentrout, T. E. Long, *Polymer*, 2010, **47**, 4085–4093.

(m, 6H). ³¹P{¹H} NMR (DMSO-d₆): δ /ppm = 26.1. **K[PPh₂(2-C₆H₄CO₂)].** ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.93–7.82 (m, 1H), 7.32–7.24 (m, 7H), 7.18–7.02 (m, 5H), 6.67–6.58 (m, 1H) ppm. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = -8.8. **K[O=PPh₂(2-C₆H₄CO₂)]**. ³ ¹H NMR (CDCl₃): δ /ppm = 8.41–8.33 (m, 1H), 7.17–7.10 (m, 1H). ³¹P{¹H} NMR (CDCl₃): δ /ppm = 40.7.

³Additional NMR signals observed upon air exposure of K[PPh₂(2-C₆H₄CO₂)].

Stability studies: complex 1. The data are reported in Table S4 while the NMR detected species are shown in Scheme S1. 1a. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.90–7.86 (m, 2H), 7.86–7.80 (m, 2H), 7.77–7.70 (m, 4H), 7.49–7.39 (m, 6H), 5.30 (d, *J* = 6.2 Hz, 2H), 5.24 (d, *J* = 6.0 Hz, 2H), 1.75 (s, 3H), 0.93 (d, *J* = 6.9 Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 24.8. **O=PPh_2(4-C_6H_4CO_2H)**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 8.08 (dd, *J* = 8.2, 2.3 Hz, 2H), 7.66–7.54 (m, 12H) ppm. ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 26.7.

Scheme S1. Compounds detected in dmso/H₂O and dmso/H₂O/NaCl solutions of 1 maintained at 37°C.

Table S4. UV-Vis absorptions, molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of 1 at 37°C. Data for analogous experiments with 0.1 M NaCl are given in parentheses.

time	0	4.75	17.5	25.5	48	72	
ε / M ^{-1.} cm ⁻	¹ at λ = 290 nm	4.40 [.] 10 ³	5.40 [.] 10 ³	6.30 [.] 10 ³	6.90 [.] 10 ³	7.60 [.] 10 ³	8.10 [.] 10 ³
ε / M ⁻¹ ·cm ⁻	1.3 [.] 10 ³	1.2 [.] 10 ³	9.7 [.] 10 ²	7.8 [.] 10 ²	4.4 [.] 10 ²	2.3 [.] 10 ²	
Λ _m / S	7	16	30	30	38	46	
% 1 vs. interna	l standard, ¹ H NMR	90 (95)	77 (86)	72 (85)	59 (67)	42 (53)	23 (35)
	1	90 (95)	74 (78)	64 (72)	46 (51)	29 (37)	14 (21)
% NMR	PPh ₂ (4-C ₆ H ₄ CO ₂ H)	9 (4)	13 (11)	16 (14)	23 (21)	32 (29)	39 (36)
(NaCI experiment)	O=PPh ₂ (4-C ₆ H ₄ CO ₂ H)	0 (0)	0 (2)	4 (3)	3 (3)	4 (4)	5 (6)
	<i>p</i> -cymene	1 (1)	13 (9)	16 (11)	28 (25)	35 (30)	42 (37)

Stability studies: complex 2. The data are reported in Table S5 while the NMR detected species are shown in Scheme S2. **2.** ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.99–7.93 (m, 1H), 7.87–7.80 (m, 2H), 7.71–7.65 (m, 1H), 7.65–7.57 (m, 2H), 7.55–7.38 (m, 6H), 7.25 (t, *J* = 7.3 Hz, 1H), 6.68 (dd, *J* = 10.0, 8.3 Hz, 1H), 5.94 (d, *J* = 6.5 Hz, 1H), 5.70 (d, *J* = 6.3 Hz, 1H), 5.62 (d, *J* = 4.2 Hz, 1H), 5.25 (d, *J* = 5.3 Hz, 1H), 2.25 (hept, *J* = 6.8 Hz, 1H), 1.78 (s, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 0.55 (d, *J* = 6.7 Hz, 3H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 30.1. **S.** ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 5.79 (d, *J* = 6.1 Hz, 2H), 5.74 (d, *J* = 6.1 Hz, 2H), 2.80 (hept, *J* = 6.7 Hz, 1H), 2.07 (s, 3H), 1.17 (d). O=**PPh₂(2-C₆H₄CO₂)⁻**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 44.5. Minor P-containing species: ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 22.6.

Scheme S2. Compounds detected in dmso/H₂O and dmso/H₂O/NaCl solutions of 2 maintained at 37 °C.

Table S5. UV-Vis absorptions, molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of **2** at 37°C. Data for analogous experiments with 0.1 M NaCl are given in parentheses.

time / hours		0	4.75	17.5	25.5	48	72
ϵ / M ⁻¹ ·cm ⁻¹ at λ = 350 nm		1.5 [.] 10 ³	1.3 [.] 10 ³	1.2 [.] 10 ³	1.1 [.] 10 ³	9.4 [.] 10 ²	9.4 [.] 10 ²
$\Lambda_{\rm m}$ / S·cm ² ·mol ⁻¹		12	20	21	17	27	29
% 2 vs. internal standard, ¹ H NMR		96 (97)	87 (85)	76 (75)	72 (71)	55 (58)	45 (52)
	2	96 (97)	88 (85)	79 (78)	72 (74)	50 (56)	41 (48)
% NMR	S	0 (0)	2 (8)	3 (9)	3 (9)	4 (8)	3 (8)
(NaCl experiment)	O=PPh₂(2-C ₆ H₄CO₂) [−]	0 (0)	0 (0)	0 (0)	0 (0)	13 (10)	12 (10)
	<i>p</i> -cymene	4 (3)	10 (7)	18 (13)	25 (17)	33 (26)	44 (34)

Stability studies: complex 3. The data are reported in Table S6 while the NMR detected species are shown in Scheme S3. **3**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.6-7.2 (Ar), 7.12–7.03 (m + **L1**), 6.64 (d, *J* = 8.6 Hz, 1H), 6.09 (s), 5.42 (d, *J* = 5.7 Hz, 2H), 5.13 (d, *J* = 5.5 Hz, 2H), 5.53 (s + **L1**), 4.71 (s, 2H), 2.74–2.66 (m, 1H), 2.36 (q, *J* = 6.9 Hz + **L1**), 1.75 (s, 3H), 1.07 (m, 9H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.6-7.2 (Ar), 7.12–7.03 (m + **3**), 6.87–6.81 (m, 1H), 6.06 (s), 5.53 (s + **3**), 5.04 (s, 2H), 2.36 (q, *J* = 6.9 Hz + **3**), 1.23–1.15 (m). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.6-7.2 (Ar), 5.55 (s), 4.91 (s, 2H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 51.2 ppm. Other species. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 5.88 (d, *J* = 6.2 Hz, 1H), 5.63 (d, *J* = 5.7 Hz, 1H), 5.46 (d, *J* = 4.8 Hz, 1H), 5.35 (d, *J* = 7.0 Hz, 1H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 18.6, 18.2 (17-72 h), 53 (25-72 h), 57 (48-72 h).

Scheme S3. Compounds detected in dmso/H₂O and dmso/H₂O/NaCl solutions of 3 maintained at 37 °C.

Table S6. UV-Vis absorptions, molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of **3** at 37°C. Data for analogous experiments with 0.1 M NaCl are given in parentheses.

time / hours		0	4.75	17.5	25.5	48	72
ε / M ^{-1.} cm ⁻¹ (λ _{max} / nm)		1.5 [.] 10 ³ (348)	1.9 [.] 10 ³ (340)	2.3 [.] 10 ³ (337)	2.5 [.] 10 ³ (335)	2.7 [.] 10 ³ (333)	2.8 [.] 10 ³ (333)
$\epsilon / M^{-1} cm^{-1} at \lambda = 41$	9.4 [.] 10 ²	8.1 [.] 10 ²	7.2 [.] 10 ²	6.5 [.] 10 ²	5.2 [.] 10 ²	3.9 [.] 10 ²	
Λ _m / S [·] cm ² ·mol	1	12	20	24	20	30	32
% 3 vs. internal standard	d, ¹ H NMR	64 (62)	47 (61)	44 (62)	39 (62)	30 (57)	24 (49)
	3	47 (45)	34 (39)	33 (39)	31 (38)	23 (35)	17 (29)
	S	27 (28)	32 (30)	32 (29)	31 (27)	29 (25)	27 (20)
% NMR (NaCl experiment)	L1	26 (27)	25 (26)	21 (22)	18 (22)	14 (20)	12 (20)
	0=L1	0 (0)	6 (3)	11 (7)	12 (7)	17 (9)	21 (12)
	<i>p</i> -cymene	0 (0)	3 (2)	3 (3)	8 (6)	17 (11)	23 (19)

Stability studies: complex 4. The data are reported in Table S7 while the NMR detected species are shown in Scheme S4. **4**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.88–7.82 (m, 4H), 7.77–7.69 (m, 4H), 7.51–7.45 (m, 2H), 7.45–7.38 (m, 4H), 7.20 (d, *J* = 8.5 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 1H), 6.02 (s, 1H), 5.49 (s, 1H), 5.31 (d, *J* = 6.1 Hz, 2H), 5.23 (d, *J* = 5.9 Hz, 2H), 5.02 (s, 2H), 4.47 (s, 4H), 2.32 (q, *J* = 6.8 Hz, 2H), 1.74 (s, 3H), 1.03 (t, *J* = 7.4 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 6H). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 25.0. **L2**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 7.68–7.53 (m, 4H), 7.51–7.45 (m + 4), 7.33–7.23 (m, 4H), 7.19 (d, *J* = 8.6 Hz), 7.14 (d, *J* = 8.5 Hz), 6.00 (s), 5.46 (d, *J* = 2.5 Hz), 5.03 (s), 4.49 (s), {2.32 (q, *J* = 6.8 Hz + 4)}, 1.03 (t, *J* = 7.4 Hz). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = -6.3. **O=L2**. ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 8.04 (dd, *J* = 8.5, 2.3 Hz, 2H), 7.89–7.86 (m, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.68–7.53 (m + **L2**). ³¹P{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 26.5.

Scheme S4. Compounds detected in dmso/H₂O and dmso/H₂O/NaCl solutions of 4 maintained at 37 °C.

Table S7. UV-Vis absorptions, molar conductivity and NMR detected species as a function of time for DMSO/water 9:1 v/v solution of **4** at 37°C. Data for analogous experiments with 0.1 M NaCl are given in parentheses.

time / hours			4.75	17.5	25.5	48	72
ϵ / M ⁻¹ ·cm ⁻¹ at λ = 375 nm		1.5 [.] 10 ³	1.3 [.] 10 ³	1.2 [.] 10 ³	1.1 [.] 10 ³	7.0 [.] 10 ²	5.4 [.] 10 ²
Λ _m / S [·] cm ² ·mol ⁻¹			16	20	16	25	29
% 4 vs. internal standard,	82 (82)	77 (78)	77 (78)	72 (66)	57 (53)	45 (39)	
	4	82 (82)	72 (70)	69 (70)	58 (54)	40 (38)	27 (24)
% NMR	L2	13 (12)	15 (16)	15 (16)	19 (23)	28 (32)	37 (41)
(NaCl experiment)	O=L2	4 (4)	7 (7)	9 (7)	8 (6)	9 (7)	8 (7)
	<i>p</i> -cymene	1 (2)	6 (7)	7 (7)	15 (17)	23 (23)	28 (28)

Figure S3. Deconvoluted ESI–MS spectra of lysozyme in ammonium acetate buffer (pH 6.8), incubated with complexes 1, 3 and 4, respectively, after 72 h at 37 °C (protein concentration = 10^{-4} M; Ru/protein molar ratio = 3).

