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1. PL spectra 

 Photoluminescence (PL) spectroscopy is a useful technique to investigate the efficiency of charge carrier 

trapping, immigration and transfer at the surface of semiconductors.1 As shown in Fig. S1, PL emission results 

from the recombination of photoinduced charge carriers. The stronger the PL signal, the higher the 

recombination rate of the photoinduced charge carriers.2 Fig. S1 shows that all samples display similar shapes 

of emission curve attributed to the indirect transition of charge carriers within the band gap of TiO2, indicating 

that the presence of W and RGO does not lead to a new PL phenomenon. In addition, W-TiO2/RGO composites 

exhibit the lowest PL signal intensity among all the samples, indicating the recombination rate of 

photoinduced charge carriers of W-TiO2/RGO is the lowest.  
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Fig. S1 PL spectra of TiO2, W-TiO2, TiO2/RGO and W-TiO2/RGO samples 

In order to further explain the enhanced visible response of W-TiO2/RGO, the hydroxyl radicals (•OH) 

were tested to quantify this in terms of photonic efficiencies.3 The •OH radicals were measured by recording 

the fluorescence derived from 2-hydroxyterephthalic acid (with a high fluorescent characteristic peak) which 

was generated during the reactions between terephthalic acid and •OH radicals. Fig. S2(a) shows a high 

fluorescent peak, indicating that •OH radicals were produced during the degradation of MB. In addition, the 

greater the response of the sample to visible light, the more •OH radicals produced through the degradation 

process, resulting in a stronger fluorescence.4,5 Fig. S2(b) shows a gradual increase in PL intensity in the case of 

TiO2, W-TiO2, TiO2/RGO and W-TiO2/RGO samples. These results indicate that the W6+ doping and graphene 

incorporation can enhance the photocatalytic activity of TiO2. 
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Fig. S2 (a) PL spectral changes observed during illumination for the W-TiO2/RGO composites; (b) Comparison of PL intensity at 

425 nm against irradiation time for TiO2, W-TiO2, TiO2/RGO and W-TiO2/RGO samples  

 

2. XPS spectra of TiO2/RGO 

The XPS spectra of TiO2/RGO composites are showed in Fig. S3. Fig. S3 (a) indicates the existence of 

elements Ti, O and C in the composites. Fig. S3 (b) exhibits Ti 2p3/2 and Ti 2p1/2 peaks of TiO2/RGO composites 

at 457.2 and 462.9 eV , which can be compared with Ti 2p3/2 and Ti 2p1/2 peaks (458.9 eV and 464.6 eV, 

respectively) of W-TiO2/RGO composites (Fig. 6(c)), indicating the presence of W into the titania lattice.6,7 

 

 

Fig. S3 (a) XPS survey spectrum of TiO2/RGO, (b) Ti 2p XPS spectrum of TiO2/RGO. 
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