Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Development of hydrogelator based Gel Entrapped Base Catalysts (GEBC) as heterogeneous basic catalysts for the synthesis of 3-acetylcoumarins

Nilesh N. Korgavkar and Shriniwas D. Samant*

Department of Chemistry, Institute of Chemical Technology, N.M. Parekh Road, Matunga, Mumbai 400 019, India

Tel No.- 022-33612606

e-mail- samantsd.ict@gmail.com

Sr. No.	Salt of divalent cation	M. W.	Solution prepared (0.5 M)	Conc (%)	Remarks
1	MgCl ₂ .6H ₂ O	203.30	2.0 g in 20 mL	10	Do not formed gel
2	CaCl ₂	111.00	1.1 g in 20 mL	5.5	Formed gel beads
3	SrCl ₂ .6H ₂ O	266.62	2.6 g in 20 mL	13	Formed gel beads
4	BaCl ₂ .2H ₂ O	244.28	2.4 g in 20 mL	12	Formed gel beads
5	Mg(NO ₃) ₂ .6H ₂ O	256.41	2.5 g in 20 mL	12.5	Do not formed gel
6	$Ba(NO_3)_2.6H_2O$	261.32	2.6 g in 20 mL	13	Formed gel beads
7	Ba(OH) ₂	315.48	3.1 g in 20 mL (do not dissolved completely)	15.5	Formed gel beads

Table S1Gelation study with divalent cations

Homogeneous colloidal solution of Na-Alg-Water-base was added dropwise in an aqueous solution of divalent cations.

Figure S1. Gel entrapped base catalyst, Ca Alg-Base

Table S2.

Entry	GEBC System	Cation	EE
		(Concentration)	(%)
1	Ca5 Alg6-Mor13	Ca ²⁺ (5%, 0.5 M)	20 (± 2)
2	Cal0 Alg6-Mor13	Ca ²⁺ (10%, 1.0 M)	25 (± 1)
3	Ca15 Alg6-Mor13	Ca ²⁺ (15%, 1.5 M)	18 (± 1)
4	Ca20 Alg6-Mor13	Ca ²⁺ (20%, 2.0 M)	15 (± 1)
5	Ba12 Alg6-Mor13	Ba ²⁺ (12%, 0.5 M)	19 (± 1)
6	Ba24 Alg6-Mor13	Ba ²⁺ (24%, 1.0 M)	25 (± 1)
7	Sr13 Alg6-Mor13	Sr ²⁺ (13%, 0.5 M)	19 (± 1)
8	Sr26 Alg6-Mor13	Sr ²⁺ (26%, 1.0 M)	23 (± 1)
9	Ca10 Alg6-Pip9	Ca ²⁺ (10%, 1.0 M)	27 (± 1)
10	Ba24 Alg6-Pip9	Ba ²⁺ (24%, 1.0 M)	26 (± 1)
11	Sr26 Alg6-Pip9	Sr ²⁺ (26%, 1.0 M)	26 (± 1)

Effect of divalent cations on base entrapment efficiency of alginate beads GEBCs

In (Ca5 Alg6-Mor13) Ca5 the integer 5 showing w/w% concentration of $CaCl_2$ solution and Alg6-Mor13 corresponds to Na Alg 6% + Morpholine 13% + Water 81%

Figure S2: Part of ternary phase diagram for (Na Alg-Water-Morpholine) system showing the points selected to study the entrapment efficiency (EE)

Table S3

Sr.	GEBC System	Composition of	EE (%)
No.		system	
1	Ca10 Alg4-Mor06	Na Alg 4% + Morpholine 6% + Water 90%	10 (± 2)
2	Ca10 Alg6-Mor04	Na Alg 6% + Morpholine 4% + Water 90%	10 (± 2)
3	Ca10 Alg4-Mor14	Na Alg 4% + Morpholine 14% + Water 82%	14 (± 1)
4	Ca10 Alg6-Mor13	Na Alg 6% + Morpholine 13% + Water 81%	25 (± 1)
5	Ca10 Alg8-Mor08	Na Alg 8% + Morpholine 8% + Water 84%	20 (± 1)
6	Ca10 Alg4-Mor23	Na Alg 4% + Morpholine 23% + Water 73%	10 (± 2)
7	Ca10 Alg5-Mor20	Na Alg 5% + Morpholine 20% + Water 75%	10 (± 2)
8	Ca10 Alg8-Mor15	Na Alg 8% + Morpholine 15% + Water 77%	22 (± 1)
9	Ca10 Alg4-Pip06	Na Alg 4% + Piperidine 6% + Water 92%	26 (± 1)
10	Ca10 Alg6-Pip04	Na Alg 4% + Piperidine 6% + Water 92%	25 (± 1)
11	Ca10 Alg4-Pip11	Na Alg 4% + Piperidine 6% + Water 92%	22 (± 1)
12	Ca10 Alg6-Pip09	Na Alg 4% + Piperidine 6% + Water 92%	28 (± 1)
13	Ca10 Alg4-Pip13	Na Alg 4% + Piperidine 6% + Water 92%	16 (± 2)
14	Ca10 Alg6-Pip13	Na Alg 4% + Piperidine 6% + Water 92%	18 (± 1)
15	Ca10 Alg4-Pip18	Na Alg 4% + Piperidine 6% + Water 92%	10(± 2)

Entrapment efficiency for different combinations of phase D

In (Ca10 Alg6-Mor13) Ca10 the integer 10 showing w/w% concentration of CaCl₂ solution and Alg6-Mor13 corresponds to Na Alg 6% + Morpholine 13% + Water 81%

Figure S3. Set-up used to perform the reaction in continuous flow

Entry	2a/b Me/Et acetoacetate	Solvent	Base	Yield (%)	Remark
1	2a	Methanol	Morpholine	78	Good yield
2	2a	Methanol	Piperidine	82	Good yield
3	2a	Methanol	TEA	26	Poor yield
4	2b	Ethanol	Morpholine	80	Good yield
5	2b	Ethanol	Piperidine	82	Good yield
6	2b	Ethanol	TEA	30	Poor yield

Table S4.Reaction of salicylaldehyde and methyl/ethyl acetoacetate

Reaction conditions: Salicylaldehyde (4.0 mmol), methyl/ethyl acetoacetate (4.0 mmol), base (25 mol%), methanol/ethanol 20 mL, rt (27-30 °C), 1h

Structures and characterization

1] 3-acetyl-2*H*-chromen-2-one (C₁₁H₈O₃)

Pale yellow solid, mp- 117-118°C, IR (KBr, cm⁻¹) 2979(C^{sp2}-H str.), 2924 (C^{sp3}-H str.), 1720(C=O str.), 1705(C=O str.), 1686, 1650(C=C str. olefinic), 1600 & 1486 (C=C str. aromatic), 1449 & 1353 (CH₃ bending), 1224, 1200, 1162, 1104 (C-O str.), 968, 932, 776, 761 (out of plane bending vibration of C-H for substituted phenyl); ¹H-NMR $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.75 (3H, s), 8.53 (1H, s), 7.67 (1H, dd, J = 4.1, 1.6 Hz), 7.39 – 7.34 (1H, m), 7.72 – 7.68 (1H, m), 7.44 – 7.39 (1H, m)

2] 3-acetyl-8-methoxy-2*H*-chromen-2-one (C₁₂H₁₀O₄)

Pale yellow solid, mp- 165-166°C, IR (KBr, cm⁻¹), 2979(C^{sp2}-H str.), 2921 (C^{sp3}-H str.), 1722(C=O str.), 1705(C=O str.), 1688, 1649(C=C str. olefinic), 1600 & 1497 (C=C str. aromatic), 1471 & 1367 (CH₃ bending), 1277, 1230, 1205, 1194, 1025, (C-O str.), 953, 932, 890, 798, 763 (out-of-plane bending vibration of C-H for substituted phenyl); ¹H-NMR δ H (400 MHz, CDCl₃) 2.75 (3H, s), 8.49 (1H, s), 7.23 (1H, dd, *J*= 7.9, 1.7 Hz), 7.28 (1H, t, J = 7.8 Hz), 7.20 (1 H, dd, *J*=7.8, 1.7 Hz), 4.00 (3H, s)

3] 3-acetyl-6-bromo-2*H*-chromen-2-one (C₁₁H₇BrO₃)

White solid, mp- 217-218°C, IR (KBr, cm⁻¹), 3042, 2976(C^{sp2}-H str.), 2921 (C^{sp3}-H str.), 1722(C=O str.), 1705(C=O str.), 1689, 1649(C=C str. olefinic), 1604 & 1496 (C=C str. aromatic), 1449 & 1363 (CH₃ bending), 1225, 1203, 1068, 1027 (C-O str.), 968, 932, 833,

776, 761 (out-of-plane bending vibration of C-H for substituted phenyl), 556; ¹H-NMR $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.74 (3H, s), 8.42 (1H, s), 7.80 (1H, d, *J* = 2.3 Hz), 7.75 (1H, dd, *J* = 8.8, 2.3 Hz), 7.29 (1H, d, *J* = 4.4 Hz)

4] 3-acetyl-6-nitro-2*H*-chromen-2-one (C₁₁H₇NO₅)

Pale yellow solid, mp-195-196°C, IR (KBr, cm⁻¹), 3101(C^{sp2}-H str.), 2927 (C^{sp3}-H str.), 1751(C=O str.), 1721(C=O str.), 1679, 1648(C=C str. olefinic), 1605 & 1496 (C=C str. aromatic), 1474 & 1357 (CH₃ bending), 1535 & 1345 (-NO2 symmetric and asymmetric str.), 1238, 1212, 1200, 1129, 1112 (C-O str.), 958, 932, 820, 766, 748 (out-of-plane bending vibration of C-H for substituted phenyl); ¹H-NMR $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.77 (3H, s), 8.57 (1H, s), 8.62 (1H, d, *J* = 2.4 Hz), 8.53 (1H, dd, *J* = 9.1, 2.6 Hz), 7.55 (1H, d, *J* = 9.1 Hz)

3d

3e

5] 3-acetyl-6-chloro-2*H*-chromen-2-one (C₁₁H₇ClO₃)

White solid, mp- 221-222°C, IR (KBr, cm⁻¹)3043, 2979(C^{sp2}-H str.), 2924 (C^{sp3}-H str.), 1722(C=O str.), 1705(C=O str.), 1689, 1649(C=C str. olefinic), 1607 & 1497 (C=C str. aromatic), 1450 & 1354 (CH₃ bending), 1227, 1203, 1080, 1027 (C-O str.), 981, 932, 835, 768, 762 (out-of-plane bending vibration of C-H for substituted phenyl), 563; ¹H NMR δ _H (400 MHz, CDCl₃) 2.74 (3H, s), 8.43 (1H, s), 7.65 (1H, d, *J* = 2.4 Hz), 7.61 (1H, dd, *J* = 8.8, 2.4 Hz), 7.35 (1H, d, *J* = 8.8 Hz)

6] 3-acetyl-6-bromo-8-methoxy-2*H*-chromen-2-one (C₁₂H₉BrO₄)

White solid, mp- 204-205°C, IR (KBr, cm⁻¹), 3049, 2976(C^{sp2}-H str.), 2936 (C^{sp3}-H str.), 1721(C=O str.), 1705(C=O str.), 1675, 1649(C=C str. olefinic), 1603 & 1500 (C=C str. aromatic), 1459 & 1355 (CH₃ bending), 1237, 1203, 1185, 1142, 1037 (C-O str.), 993, 933, 841, 835, 768, 730 (out-of-plane bending vibration of C-H for substituted phenyl), 554 (C-Br str.); ¹H-NMR $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.74 (3H, s), 8.38 (1H, s), 7.37 (1 H, d, *J* = 2.0 Hz), 7.27 (1H, d, *J* = 2.0 Hz), 4.00 (3H, s)

7] 3-acetyl-6-bromo-8-methoxy-2*H*-chromen-2-one (C₁₂H₉NO₆)

white solid, mp- 215-216°C, IR (KBr, cm⁻¹), 2976(C^{sp2}-H str.), 2924 (C^{sp3}-H str.), 1751, 1720(C=O str.), 1705(C=O str.), 1663, 1649(C=C str. olefinic), 1605 & 1467 (C=C str. aromatic), 1449 & 1322 (CH₃ bending), 1567, 1335 (-NO₂ symmetric and asymmetric str.), 1235, 1212, 1100, 1078 (C-O str.), 833, 768, 748, 692 (out-of-plane bending vibration of C-H for substituted phenyl); ¹H-NMR, $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.76 (3H, s), 8.53 (1H, s), 8.20 (1H, d, *J* = 2.4 Hz), 8.02 (1H, d, *J* = 2.4 Hz), 4.12 (3H, s)

9] 3-acetyl-7-(N,N-diethylamino)-2H-chromen-2-one (C₁₅H₁₇NO₃)

Yellow solid, mp- 148-149°C, IR (KBr, cm⁻¹), 3119, 2965(C^{sp2}-H str.), 2930 (C^{sp3}-H str.), 1722(C=O str.), 1714(C=O str.), 1661(C=C str. olefinic), 1612 & 1505 (C=C str. aromatic), 1476 & 1360 (CH₃ bending), 1214, 1187, 1135, 1094, 1075, 966, 950 (C-O str.), 816, 803, 758, 702 (out-of-plane bending vibration for substituted phenyl); ¹H-NMR δ _H (400 MHz, CDCl₃) 2.70 (3 H, s), 8.45 (1H, s), 7.42 (1H, d, *J* = 9.0 Hz), 6.62 (1H, dd, *J* = 2.5 Hz), 6.48 (1H, d), 3.48 (4H, q, *J* = 7.1 Hz), 1.26 (6H, t, *J* = 7.1 Hz).

9] 3-acetyl-7-hydroxy-2*H*-chromen-2-one (C₁₁H₈O₄)

Buff coloured solid- mp- 240-241°C, IR (KBr, cm⁻¹), 3214 (-OH str), 3067, 3046(C^{sp2}-H str), 2921 (C^{sp3}-H str.), 1723(C=O str.), 1705(C=O str.), 1680, 1648 (C=C str. olefinic), 1606 & 1505 (C=C str. aromatic), 1451 & 1357 (CH₃ bending), 1215, 1165, 1135, 979, 932, 848 (C-O str.), 824, 768, 733, 692, 613 (out-of-plane bending vibration of C-H for substituted phenyl); ¹H-NMR $\delta_{\rm H}$ (400 MHz, DMSO) 2.55 (3H, s), 8.60 (1H, s), 7.79 (1H, d, *J* = 8.6 Hz), 6.86 (1H, dd, *J* = 8.6, 2.2 Hz), 6.76 (1H, d, *J* = 2.2 Hz)

10]2-acetyl-3H-benzo[f]chromen-3-one (C₁₅H₁₀O₃)

Yellow solid, mp- 181-182°C , IR (KBr, cm⁻¹) , 3066, 2976(C^{sp2}-H str.), 2930 (C^{sp3}-H str.), 1723(C=O str.), 1705(C=O str.), 1674, 1650 (C=C str. olefinic), 1596 & 1500 (C=C str. aromatic), 1476 & 1360 (CH₃ bending), 1214, 1187, 1135, 1094, 1075, 966, 950 (C-O str.), 816, 803, 758, 702 (out-of-plane bending vibration of C-H for substituted phenyl); ¹H-NMR $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.82 (3H, s), 9.37 (1H, s), 7.52 (1H, d, *J* = 9.0 Hz), 7.96 (1H, d, *J* = 8.1 Hz), 8.14 (1H, d, *J* = 9.0 Hz), 7.79 (1H, ddd, *J* = 8.4, 7.0, 1.3 Hz), 7.65 (1H, ddd, *J* = 8.1, 7.0, 1.1 Hz), 8.42 (1H, d, *J* = 8.3 Hz)

¹H NMR Spectra-

1] 3-acetyl-2*H*-chromen-2-one (C₁₁H₈O₃) – CDCl₃, 400 MHz

2] 3-acetyl-8methoxy-2H-chromen-2-one (C₁₂H₁₀O₄)- CDCl₃, 400 MHz

3] 3-acetyl-6-bromo-2*H*-chromen-2-one (C₁₁H₇BrO₃)- CDCl₃, 400 MHz

4] 3-acetyl-6-nitro-2*H*-chromen-2-one (C₁₁H₇NO₅)- CDCl₃, 400 MHz

5] 3-acetyl-6-chloro-2*H*-chromen-2-one (C₁₁H₇ClO₃)- CDCl₃, 400 MHz

6] 3-acetyl-6-bromo-8-methoxy-2*H*-chromen-2-one (C₁₂H₉BrO₄)- CDCl₃, 400 MHz

7] 3-acetyl-6-nitro-8-methoxy-2*H*-chromen-2-one (C₁₂H₉NO₆)- CDCl₃, 400 MHz

8] 3-acetyl-7-(N,N-diethylamino)-2*H*-chromen-2-one (C₁₅H₁₇NO₃)- CDCl₃, 400 MHz

9] 3-acetyl-7-hydroxy-2*H*-chromen-2-one (C₁₁H₈O₄) – DMSO-d6, 400 MHz

10] 2-acetyl-3H-benzo[f]chromen-3-one (C15H10O3)- CDCl3, 400 MHz

