Synthesis, G-quadruplex binding properties and cytotoxicity of naphthalimidethiourea conjugates
 Wang ${ }^{\text {a }}$, Yimeng Qian ${ }^{\text {a }}$, Guoqiang Yang ${ }^{\text {b }}$
(aThe Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
${ }^{\mathrm{b}}$ CAS Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China)

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}$ in DMSO- d_{6}.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR of 3a in DMSO- d_{6}.
ESI-MS Spectrum,NIE-Me
\#:1 Ret Time:Averaged 1.307-1.627(Scan\#:50-62)
Mass Peaks:230 Base peak:400.30(3323541) Polarity:Pos Segment - Event1
Intensity

Fig. S3 ESI-MS of 3a in DMSO-d ${ }_{6}$.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}$ in DMSO- d_{6}.

Fig. S5 ${ }^{13} \mathrm{C}$ NMR of in $\mathbf{3 b}$ DMSO- d_{6}.
\#:1 Ret Time:Averaged 1.307-1.653(Scan\#:50-63)
Mass Peaks:206 Base peak:414.25(2901681) Polarity:Pos Segment - Event
Intensity

Fig. S6 ESI-MS of 3b in DMSO-d ${ }_{6}$.

Fig. $\mathbf{S 7}^{1} \mathrm{H}$ NMR of $\mathbf{3 c}$ in DMSO- d_{6}.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}$ in DMSO- d_{6}.
ESI-MS Spectrum,NIE-Bu
\#:1 Ret Time:Averaged 1.333-1.653(Scan\#:51-63)
Mass Peaks:264 Base peak:442.35(1734737) Polarity:Pos Segment - Event 1
Intensity

Fig. S9 ESI-MS of 3c in DMSO-d ${ }_{6}$.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}$ in DMSO-d 6 .

Fig. S11 ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 d}$ in DMSO- d_{6}.

ESI-MS Spectrum,NIE-Ph

\#:1 Ret Time:Averaged 1.360-1.627(Scan\#:52-62)
Mass Peaks:226 Base peak:462.30(2082052) Polarity:Pos Segment - Event

Fig. S12 ESI-MS of 3d in DMSO-d ${ }_{6}$.

Fig. S13 Cyclic voltammograms of (a) 3a (50 $\mu \mathrm{M}$) and (b) 3d (50 $\mu \mathrm{M}$) in the absence and presence of CT DNA ($50 \mu \mathrm{M}$), and (c) $3 \mathbf{a}(50 \mu \mathrm{M})$ in the absence and presence of Htelo G-quaruplex DNA ($5 \mu \mathrm{M}$) in HEPES (10 mM , pH 7.4) buffer containing 0.1 M KCl . Scan rate $20 \mathrm{mV} . \mathrm{S}^{-1}$.

Fig. S14 The docking results of platinum complexes (a) 1, (b) 2 and (c) 3 in the different sites of telomeric G-quadruplex (PDB code: 1KF1).

Fig. S15 Molecular docking Different views of the docked model of $\mathbf{3 b}(\mathrm{a}, \mathrm{b})$, 3c (c, d) with telomeric G-quadruplex (PDB code: 1KF1). The red dotted line represents the lengths of the hydrogen bond.

Fig. S16 Cytotoxicity of 3a-3d and amonafide against (a) A549 and (b) HUVEC cells

