Supporting Information

Label-free colorimetric detection of tetracycline using analyte-responsive

inverse-opal hydrogels based on molecular imprinting technology

Qian Yang,^{a,b} Hailong Peng,^{a,c} Jinhua Li, ^b Yanbin Li,^c Hua Xiong,^{*a} and Lingxin Chen^{*b}

- ^a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- ^b Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- ^c Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA

* Corresponding author. E-mail address: lxchen@yic.ac.cn (L. Chen); huaxiong100@126.com (H. Xiong)

Fig. S1. Schematic illustration for the preparation of TCH-responsive IOH.

Fig. S2. SEM images of periodic silica-air arrays formed using silica microspheres of different sizes: (A) 200 nm prepared with 4 mL ammonia, (B) 230 nm prepared with 7 mL ammonia, (C) 270 nm prepared with 10 mL ammonia, and (D) UV-vis absorption spectra and photographs of silica-air arrays corresponding to different sizes.

Fig. S3. SEM images of silica microspheres prepared (A) before and (B) after optimization.

Fig. S4. UV-vis diffuse reflection spectrum of fabricated TC-responsive IOH; the inset shows a photograph of the TC-responsive IOH.

Table S1 Comparisons of fabricated TC-responsive IOH analytical performance with other reported typical imprinted analyte-responsive IOHs.

Target	Linear range	Diffraction peak shift or	Responsive	Reference
analyte		wavelength change $(\Delta \lambda)$	time	
Cholesterol	2.59×10 ⁻¹³ - 2.59×10 ⁻⁷ M	$425 \text{ nm} - 400 \text{ nm}, \Delta \lambda = 25 \text{ nm}$	2 min	25
Bile acid	10 ⁻¹² – 10 ⁻⁶ M	425 nm – 395 nm, $\Delta\lambda = 30$ nm	2 min	33
Imidacloprid	10 ⁻¹³ – 10 ⁻⁷ M	551 nm – 589 nm, $\Delta\lambda = 38$ nm	-	34
Bisphenol A	10 ⁻¹³ – 10 ⁻³ M	$\Delta \lambda = 15 \text{ nm}$	-	35
Cinchonine	$0 - 10^{-3} M$	$527 \text{ nm} - 503 \text{ nm}, \Delta \lambda = 24 \text{ nm}$	5 min	36
Ketamine	$0-1~\mu g~mL^{-1}$	543.5 nm $- 622.5$ nm, $\Delta \lambda = 79$ nm	2 min	37
Atrazine	10 ⁻¹⁶ – 10 ⁻⁶ M	558 nm – 618 nm, $\Delta\lambda = 60$ nm	2 min	18
L-Tryptophan	$10^{-10} - 10^{-5} \text{ M}$	$\Delta\lambda = 126 \text{ nm}$	-	26
Tetracycline	$1\times 10^{10}-1\times 10^{6}$ M	438 nm – 395 nm, $\Delta\lambda = 43$ nm	3 min	This work

Reference:

- 18. Z. Wu, C. Tao, C. Lin, D. Shen and G. Li, Chem-Eur. J., 2008, 14, 11358.
- 25. J. Li, Z. Zhang, S. Xu, L. Chen, N. Zhou, H. Xiong and H. Peng, J. Mater. Chem., 2011, 21, 19267.
- 26. Z. Yang, D. Shi, M. Chen and S. Liu, Anal. Methods, 2015, 7, 8352.
- Z. Wu, X. Hu, C. Tao, Y. Li, J. Liu, C. Yang, D. Shen and G. Li, *J. Mater. Chem.*, 2008, 18, 5452.
 X. Wang, Z. Mu, R. Liu, Y. Pu and L. Yin, *Food Chem.*, 2013, 141, 3947.
- 35. N. Griffete, H. Frederich, A. Maître, C. Schwob, S. Ravaine, B. Carbonnier, M. M. Chehimi and C. Mangeney, J. Colloid Interf. Sci., 2011, 364, 18.
- 36. Y. Zhang, S. Huang, C. Qian, Q. Wu and J. He, J. Appl. Polym. Sci., 2016, 133, 43191.
- 37. L. Meng, P. Meng, Q. Zhang and Y. Wang, Anal. Chim. Acta, 2013, 771, 86.