Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Section

New aspects of coordination chemistry and biological activity of NTMP-related diphosphonates equipped in heterocyclic ring

J. Gałęzowska^a*, H. Czapor-Irzabek^b, R. Janicki^c, E. Chmielewska^d, T. Janek^a

Content:

Comment S1. Potentiometric data evaluation additional details

Figure S1. UV-vis spectra for Cu^{2+} and Ni^{2+} complexes on a broad pH range. For Cu^{2+} measurements: [L]=1×10⁻³M, [Cu^{2+}]=1×10⁻³M, for Ni^{2+} ; [L]=5×10⁻³M, [Ni^{2+}]=5×10⁻³M. Spectra of Cu^{2+} (aq) and Ni^{2+} (aq) (green) under the same conditions ware additionally shown for comparison purposes.

Table S1. ESI-MS data for L^1/Cu^{2+} , Zn^{2+} , Ni^{2+} , Ca^{2+} and Mg^{2+} complexes.

Table S2. ESI-MS data for L^2/Cu^{2+} , Zn^{2+} , Ni^{2+} , Ca^{2+} and Mg^{2+} complexes.

Figure S2. ESI-MS data for ligands alone.

Figure S3. ESI-MS data for $M^{2+}L^{1-2}$ complexes. Enlarged pictures: experimental (higher panel) vs simulated (lower panel) isotopic pattern of the complexes; shown only for main species.

Figure S4. The contribution of particular thermodynamic forces into the binding events for studied systems.

Figure S5. Standard deviation around ITC fit for studied systems.

Comment S1. Potentiometric data evaluation additional details

Both L¹ and L² were synthesized in the form of diammonium salts $((NH_4)_2L^{1,2})$ in order to improve the solubility of molecules in water. Therefore ammonium cations were also considered in the overall model of acid – base equilibrium. The determined values of the protonation constants fall in the region 8.57-9.50 and are very close to those reported in literature. ^{1,2,3}

Since ammonium and L^1/L^2 ligand may form mixed complexes with metal cations^{1,4} the formation of such species was taken into consideration. No tertiary complexes were detected in studied systems. The $[Cu(NH_3)_2]^{2+}$ complex is the only detected species in which ammonia molecules are coordinated, however it is formed at pH as high as 9 and its molar fraction is less than 15%.

The metal ion hydrolysis was considered,^{5,6,7,8} however no hydrolytic species were detected.

No precipitation occurred in any of studied systems in studied pH range (2-11).

Figure S1. UV-vis spectra for Cu²⁺ and Ni²⁺ complexes on a broad pH range. For Cu²⁺ measurements: $[L]=1\times10^{-3}M$, $[Cu^{2+}]=1\times10^{-3}M$, for Ni²⁺; $[L]=5\times10^{-3}M$, $[Ni^{2+}]=5\times10^{-3}M$. Spectra of Cu $_{aq}^{2+}$ and Ni $_{aq}^{2+}$ (green) under the same conditions ware additionally shown for comparison purposes.

L ¹ : Cu ²⁺							
complex	calc. ^a	found ^b	err [ppm]	relative intensity [%]			
[L+H] ⁺	297.04	297.0407	2.36	3			
[L+Cu-H]⁺	357.9539	357.9546	1.96	92			
[L+Cu-H+H ₂ O] ⁺	375.9645	375.9648	0.80	46			
[L+Cu+Na-2H] ⁺	379.9359	379.9364	1.32	100			
[2L+2Cu-3H] ⁺	714.9006	714.9005	-0.14	8			
[2L+2Cu+Na-4H] ⁺	736.8825	736.8820	-0.68	8			
L ¹ : Ni ²⁺							
[L+Ni-H] ⁺	352.9597	352.9577	-5.67	54			
[L+Ni-H+H ₂ O] ⁺	370.9702	370.9687	-4.04	70			
[L+Ni+Na-2H] ⁺	374.9416	374.9411	-1.33	31			
[2L+2Ni-3H] ⁺	704.9121	704.9084	-5.25	6			
L ¹ : Zn ²⁺							
[L+H] ⁺	297.0400	297.0402	0.67	38			
[L+Zn-H]⁺	358.9535	358.9539	1.11	100			
$[L+Zn-H+H_2O]^+$	376.9640	376.9640	0.00	40			
[2L+2Zn-3H] ⁺	716.8997	716.8994	-0.42	7			
L ¹ : Ca ²⁺							
[L+Ca-H]⁺	334.9869	334.9878	2.69	4			
$[L+Ca-H+H_2O]^+$	352.9975	352.9984	2.55	5			
[L+Ca+Na-2H]+	356.9689	356.9698	2.52	36			
[L+Ca+2Na-3H]+	378.9508	378.9518	2.64	100			
[L+Ca+3Na-4H]+	400.9328	400.9343	3.74	17			
[2L+2Ca+2Na-5H]+	712.9305	712.9304	-0.14	6			
L ¹ : Mg ²⁺							
[L+Mg-H] ⁺	319.0094	319.0093	-0.31	3			
[L+Mg-H+H ₂ O] ⁺	337.0199	337.0181	-5.34	6			
[L+Mg+Na-2H] ⁺	340.9913	340.9896	-4.99	33			
[L+Mg+2Na-3H] ⁺	362.9733	362.9729	-1.10	100			
$[L+Mg+2Na-3H+H_2O]^+$	380.9838	380.9812	-6.82	79			
[2L+2Mg+2Na-5H] ⁺	680.9754	680.9730	-3.52	9			
[2L+2Mg+3Na-6H] ⁺	702.9573	702.9576	0.43	8			

Table S1. ESI-MS data for L^1/Cu^{2+} , Zn^{2+} , Ni^{2+} , Ca^{2+} and Mg^{2+} complexes.

^a monoisotopic mass of the indicated ion formed by the ligand calculated by Compass DataAnalysis 4.2

^b monoisotopic mass found experimentally on a compact[™] mass spectrometer (Bruker Daltonics. Bremen. Germany)

L ² : Cu ²⁺							
complex	calc.ª	found ^b	err [ppm]	relative intensity [%]			
[L+H] ⁺	336.0509	336.0509	0.00	11			
[L+Cu-H]⁺	396.9648	396.9650	0.50	100			
[L+Cu+Na-2H] ⁺	418.9468	418.9468	0.00	95			
[2L+2Cu-3H]+	792.9224	792.9220	-0.50	3			
L ² : Ni ²⁺							
[L+Ni-H] ⁺	391.9706	391.9715	2.30	90			
[L+Ni-H+H ₂ O] ⁺	409.9811	409.9818	1.71	43			
[L+Ni+Na-2H] ⁺	413.9525	413.9532	1.69	85			
L ² : Zn ²⁺							
[L+H] ⁺	336.0509	336.0522	3.87	21			
[L+Zn-H] ⁺	397.9644	397.9658	3.52	100			
[L+Zn+Na-2H] ⁺	419.9463	419.9482	4.52	89			
[2L+2Zn-3H] ⁺	794.9215	794.9243	3.52	10			
L ² : Ca ²⁺							
[L+2Na-H]+	380.0148	380.0139	-2.37	9			
[L+3Na-2H] ⁺	401.9967	401.9953	-3.48	33			
[L+4Na-3H]+	423.9787	423.9760	-6.37	22			
[L+Ca+Na-2H]+	395.9798	395.9786	-3.03	21			
[L+Ca+2Na-3H]+	417.9617	417.9606	-2.63	100			
[L+Ca+3Na-4H]+	439.9437	439.9425	-2.73	25			
L ² : Mg ²⁺							
[L+Mg+Na-2H] ⁺	380.0022	380.0017	-1.32	5			
[L+Mg+2Na-3H] ⁺	401.9842	401.9848	1.49	100			
$[L+Mg+2Na-3H+H_2O]^+$	419.9947	419.9936	-2.62	54			
$[L+Mg+3Na-4H+H_2O]^+$	441.9767	441.9762	-1.13	22			

Table S2. ESI-MS data for L^2/Cu^{2+} , Zn^{2+} , Ni^{2+} , Ca^{2+} and Mg^{2+} complexes.

^a monoisotopic mass of the indicated ion formed by the ligand calculated by Compass DataAnalysis 4.2

^b monoisotopic mass found experimentally on a compact[™] mass spectrometer (Bruker Daltonics. Bremen. Germany)

L1

Figure S2. ESI-MS data for ligands alone

Figure S3. ESI-MS data for M^{2+/}L¹⁻² complexes. Enlarged pictures: experimental (higher panel) vs simulated (lower panel) isotopic pattern of the complexes; shown only for main species.

Figure S4. The contribution of particular thermodynamic forces into the binding events for studied systems.

Figure S5. Standard deviation around ITC fit for studied systems.

- ³ W. N. Perera and G. Senanayake, Inorg. Chem., 2004, 43, 3048.
- ⁴ L. N. Trevani, J. C. Roberts and P.R. Tremaine, J Sol. Chem, 2001, 30, 585.

¹ N. Saha and H. Sigel, J. Am. Chem. Soc., 1982, **104**, 4100.

² S. Kim and R. Martin, J. Am. Chem. Soc, 1984, **106**, 1707.

⁵ K.J. Powell, P. L. Brown, R.H. Byrne, T. Gajda, G. Hefters, S. Sjöberg, and H. Wanner, *Pure Appl. Chem.*, 2007, **79**, 895, part 2

⁶ Kipton J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A-K. Leuz, S. Sjöberg and H.Wanner *Pure Appl. Chem.*, 2013, **85**, 2249, part 5.

⁷ Alkaline Earth Hydroxides in Water and Aqueous Solutions, A volume in IUPAC Solubility Data Series, Elsevier, 1992, Pages 49–111 and Pages 112–247.

⁸ S. Bandyopadhyay, A. Das, G.N. Mukherjee, A. Cantoni, G. Bocelli, S. Chaudhuri and J. Ribas, *Inorg. Chim. Acta*, 2004, 357, 3563.