Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information

Crown ether triad modified core-shell magnetic mesoporous silica nanocarrier for pH-responsive drug delivery and magnetic hyperthermia applications

Madhappan Santha Moorthy, a Subramanian Bharathiraja, Panchanathan Manivasagan, a

Kang Dae Lee,^c and Junghwan Oh,^{a,b},*

^a Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology

(BK21 Plus), Pukyong National University, Busan-48513, Republic of Korea

^b Marine-Integrated Bionics Research Center, Pukyong National University,

Busan-48513, Republic of Korea

^c Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan-48513, Republic of Korea

*Email: jungoh@pknu.ac.kr

Fig. S1 (a) TEM; and (b) SEM images of the magnetic Fe₃O₄ nanoparticles.

Fig. S2 TGA curves of (a) FeNP@SiOH@GPTMS NPs; (b) FeNP@SiOH@EDA NPs and (c) FeNP@SiOH@CET NPs.

Fig. S3 Zeta potentials of FeNP@SiOH@EDA and FeNP@SiOH@CET nanoparticles as a function of different pH conditions.

Fig. S4 Thermal response curves of FeNP@SiOH@CET NPs dispersed in water with the different concentrations and subjected to an AMF (f = 409 kHz and H = 180 Gauss).

Fig. S5 The SAR values of pristine Fe_3O_4 nanoparticles and FeNP@SiOH@CET NPs under magnetic field frequency f = 409 kHz and applied magnetic field H = 180 Gauss

Fig. S6 Wide scan X-ray photoelectron spectra of (a) FeNP@SiOH@CET NPs; and (b) FeNP@SiOH@EDA NPs, respectively.

Fig. S7 UV-vis spectra of (a) initial concentration of Dox solution; and (b) final concentration of Dox solution after absorption by FeNP@SiOH@CET NPs.