Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information for

New insights on the influence of weak and strong acids on the oxidative stability and photocatalytic activity of porphyrins

Saeed Zakavi*, Saiedeh Hoseini and Aida G. Mojarrad

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail: zakavi@iasbs.ac.ir

Contents:

S1a: Synthesis and spectral data (¹H NMR, ¹³C NMR and UV-Vis) of the free base porphyrins **S1b:** ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with CF₃COOH S1c: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with HClO₄ S1d: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with HCl **S1e:** ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications withCHCl₂COOH **S1f:** ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with CH₂ClCOOH S1g: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with HCOOH S2(a-d): ¹H NMR and ¹³C NMR spectra of H₂TPP S3(a-d): ¹H NMR and ¹³C NMR spectra of H₂T(4-OMe)PP S4(a-d): ¹H NMR and ¹³C NMR spectra of H₂T(2-Me)PP S5(a-d): ¹H NMR and ¹³C NMR spectra of H₂T(4-Me)PP S6(a-d): ¹H NMR and ¹³C NMR spectra of H₂T(2-Cl)PP S7(a-d): ¹H NMR and ¹³C NMR spectra of H₂T(4-Cl)PP **S8(a-d):** ¹H NMR and ¹³C NMR spectra of H₄TPP(CF₃COO)₂ S9(a-e): ¹H NMR and ¹³C NMR spectra of H₄TPP(HCOO)₂ **S10(a-d):** ¹H NMR and ¹³C NMR spectra of H₄TPP(CH₂ClCOO)₂ **S11(a-d):** ¹H NMR and ¹³C NMR spectra of H₄TPP(CHCl₂COO)₂ **S12(a-d):** ¹H NMR and ¹³C NMR spectra of H₄TPP(Cl)₂ **S13(a-d):** ¹H NMR and ¹³C NMR spectra of H₄TPP(ClO₄)₂ **S14:** Experimental setup for the photooxidation reactions **S15:**¹³C NMR data of Cyclooct-1-en-3-yl hydroperoxide

S1a: Synthesis and spectral data (¹H NMR, ¹³C NMR and UV-Vis) of the free base porphyrins

The *para* and *ortho* substituted meso-tetra(phenyl)porphyrins were synthesized and purified according to the Adler et al. method.¹ In a typical reaction, the solution of pyrrole (5.6 ml, 0.08 mol) and benzaldehyde (8 ml, 0.08 mol) were added to 300 ml refluxing propionic acid in a 1 l round bottom flask equipped with a water condenser. In order to prevent the aldehye and pyrrole from pouring or squirting out after addition to the refluxing propionic acid, pyrrole and benzaldehyde were separately dissolved in 5 ml propionic acid and then were added to the refluxing propionic acid (290 ml). The mixture was refluxed for 30 min. After cooling the reaction mixture to the room temperature, the solution was filtered and the filter cake was washed thoroughly with methanol and hot water, respectively. The product was chromatographed once on a neutral alumina column with dichloromethane to obtain purple crystals of H₂TPP. The spectral data (¹H NMR, ¹³C NMR and UV-Vis) of the free base porphyrins are as follows. Also, the ¹H NMR and ¹³C NMR spectra of the used porphyrins are shown in S2 to S7. The NMR data were in accordance with those reported in the literature.²⁻⁶

H₂TPP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8H_m and 4H_p, m), 8.26-8.27 (8H_o, d), 8.90 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.18 (C_{meso}), 142.20 (C₁), 134.60 (C₂, C₆), 126.73 (C₃, C₅), 127.75 (C₄), 131.5 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

H₂T(4-OMe)PP. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.72 (2H, br, s, NH), 7.29-7.32 (8H_m, d), 8.15-8.17 (8H_o, d), 8.89 (8H_β, s), 4.13 (12H_{Me}, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.75 (C_{meso}), 134.67 (C₁), 135.62 (C₂, C₆), 112.20 (C₃, C₅), 159.39 (C₄), 131.34 (C_β), 55.61 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε)= 421 (5.61), 517 (4.32), 555 (4.22), 593 (4.06), 651 (4.11).

H₂T(2-Me)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.59 (2H, br, s, NH), 7.54-7.74 (8H_m and 4H_p, m, meta and para-position relative to C atom attached to meso position), 7.99-8.11 (4H_o, m, ortho-position relative to C atom attached to meso position), 7.99-8.11 (4H_o, m, ortho-position relative to C atom attached to meso position), 8.70 (8H_β, s), 2.01-2.11 (12H_{Me}, m);); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 118.82 (C_{meso}), 139.54 (C₁), 139.63 (C₂), 128.38 (C₃), 129.22 (C₄), 124.21 (C₅), 133.90 (C₆), 141.48 (C_α), 129.22 (C_β), 21.37 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 416 (6.04), 512 (4.74), 545 (4.34), 589 (4.34), 645 (4.25).

H₂T(4-Me)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.76 (2H, br, s, NH), 7.55-7.58 (8H_m, d), 8.09-8.12 (8H_o, d), 8.86 (8H_β, s), 2.65 (12H_{Me}, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.47 (C_{meso}), 139.73 (C₁), 134.92 (C₂, C₆), 127.81 (C₃, C₅), 137.71 (C₄), 131.37 (C_β), 21.57 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 418 (5.89), 516 (4.54), 551 (4.34), 590 (4.18), 647 (4.20).

H₂T(2-CI)PP. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.62 (2H, br, s, NH), 7.66-7.87 (8H_m and 4H_p, m, meta and para-position relative to C atom attached to meso position), 8.10-8.26 (4H_o, m, ortho-position relative to C atom attached to meso position), 8.10-8.26 (4H_o, m, ortho-position relative to C atom attached to meso position), 8.72 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 116.76 (C_{meso}), 137.10 (C₁), 136.94 (C₂), 129.01 (C₃), 129.93 (C₄), 125.32 (C₅), 135.52 (C₆), 140.50 (C_α), 135.39 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 416 (5.64), 512 (4.47), 543 (4.07), 587 (4.15), 643 (3.96).

H₂T(4-Cl)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.83 (2H, br, s, NH), 7.77-7.79 (8H_m, d), 8.15-8.17 (8H_o, d), 8.87 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 119.01 (C_{meso}), 140.37 (C_1), 135.52 (C_2 , C_6), 127.07 (C_3 , C_5), 134.41 (C_4), 131.64 ($C_β$); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 418 (5.79), 513 (4.52), 547 (4.25), 590 (4.16), 647 (4.10).

S1b: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with CF₃COOH

H₄**TPP(CF**₃**COO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.276 (4H, br, s, NH), 7.99-8.043 (8H_m and 4H_p, m), 8.616-8.652 (8H_o, m), 8.616-8.652 (8H_β, m); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.77 (C_{meso}), 139.90 (C₁), 138.52 (C₂, C₆), 128.31 (C₃, C₅), 130.01 (C₄), 145.72 (C_α), 128.31 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 437 (5.83), 600 (4.46), 652 (4.93).

H₄T(4-OMe)PP(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.425 (4H, br, s, NH), 7.553-8.573 (8H_m, d), 8.527-8.562 (8H_β, 8H_o, br), 4.195 (12H_{Me}, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.09 (C_{meso}), 133.44 (C₁), 140.01 (C₂, C₆), 114.01 (C₃, C₅), 161.49 (C₄), 146.11 (C_α), 127.75 (C_β), 55.84 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 449 (5.77), 686 (5.07).

H₄T(2-Me)PP(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -0.954 (4H, br, s, NH), 7.721-7.895 (8H_m and 4H_p, br, meta and para-positions relative to C atom attached to the meso position), 8.181-8.216 (4H_o, br, ortho-position relative to the C atom attached to the meso position), 8.651-8.682 (8H_β, s), 2.208-2.285 (H_{Me}, m); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 121.47 (C_{meso}), 138.33 (C₁), 140.86 (C₂), 128.41 (C₃), 129.08 (C₄), 125.39 (C₅), 136.62 (C₆), 145.51 (C_α), 130.54 (C_β), 21.87 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 432 (5.99), 583 (6.46), 633 (4.89).

H₄T(4-Me)PP(CF₃COO)₂. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 0.42 (4H, br, s, NH), 7.79-7.82 (8H_m, d), 8.46-8.49 (8H_o, d), 8.55 (8H_β, s), 2.67 (12H_{Me}, s); ¹³C NMR (~100MHz,CDCl₃, TMS), δ/ppm: 122.60 (C_{meso}), 137.56 (C₁), 138.62 (C₂, C₆), 129.12 (C₃, C₅), 140.31 (C₄), 145.85 (C_α), 127.95 (C_β), 21.68 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 442 (5.85), 666 (5.01).

H₄T(2-Cl)PP(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 1.5 (4H, br, s, NH), 7.77-7.938 (8H_m and 4H_p, m, meta and para-positions relative to the C atom attached to the meso position), 8.29 (4H_o, br, ortho-position relative to C atom attached to the meso position), 8.681 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 117.99 (C_{meso}), 137.39 (C₁), 137.72 (C₂), 129.58 (C₃, C₄), 125.88 (C₅), 136.75 (C₆), 146.16 (C_α), 131.04 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 431 (5.76), 580 (4.69), 632 (4.75).

H₄T(4-Cl)PP(CF₃COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 0.392 (4H, br, s, NH), 8.026-8.046 (8H_m, d), 8.518-8.539 (8H_o, d), 8.635 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 121.73 (C_{meso}), 138.11 (C₁), 139.22 (C₂, C₆), 128.81 (C₃, C₅), 137.50 (C₄), 145.67 (C_α), 128.38 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 439 (6.06), 656 (5.16).

S1c: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with HClO₄

H₄TPP(ClO₄)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 8.021-8.098 (8H_m and 4H_p, m), 8.65-8.67 (8H_o, d), 8.838 (8H_β, s), no signal was observed for the NH protons at 20 0 C.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 123.38 (C_{meso}), 139.50 (C₁), 138.72 (C₂, C₆), 128.56 (C₃, C₅), 130.46 (C₄), 146.21 (C_α), 129.76(C_β); UV-vis in CH₂Cl₂, $\lambda_{max}/nm(log\epsilon)$: 439 (4.64), 600 (3.36), 655 (3.79).

H₄T(2-Cl)PP(ClO₄)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 1.3(4H, br, s, NH), 7.84-8.03 (8H_m and 4H_p, m, meta and para-positions relative to the C atom attached to the meso position), 8.38-8.42 (4H_o, br, ortho-position relative to C atom attached to the meso position), 8.79-8.26 (8H_β, m); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 119.46 (C_{meso}), 137.80 (C₁), 138.32(C₂), 129.87 (C₃, C₄), 126.52(C₅), 137.29 (C₆), 146.20 (C_α), 132.17 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 435 (4.60), 583 (3.41), 631 (3.50).

S1d: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with HCl

H₄TPP(Cl)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.984-8.074 (8H_m and 4H_p, m), 8.626-8.663 (8H_o, m), 8.626-8.663 (8H_β, m), no signal was observed for the NH protons at 20 $^{\circ}$ C.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.63 (C_{meso}), 139.93 (C₁), 139.05 (C₂, C₆), 128.12 (C₃, C₅), 130.01 (C₄), 146.05 (C_α), 128.40(C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 445 (5.70), 611 (3.43), 662 (3.77).

H₄T(2-Cl)PP(Cl)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 1.497(4H, br, s, NH), 7.84-8.01 (8H_m and 4H_p, m, meta and para-positions relative to the C atom attached to the meso position), 8.37 (4H_o, br, ortho-position relative to C atom attached to the meso position), 8.53 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 118.72 (C_{meso}), 138.21 (C₁), 138.63 (C₂), 127.97 (C₃), 130.08 (C₄), 126.39 (C₅), 137.75 (C₆), 146.13 (C_α), 131.79 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 444 (4.48), 591 (3.39), 641 (3.49).

S1e: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with CHCl₂COOH

H₄TPP(CHCl₂COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.99-8.07 (8H_m and 4H_p, m), 8.64-8.66 (8H_o, m), 8.71 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 123.16 (C_{meso}), 139.57 (C₁), 138.62 (C₂, C₆), 128.96 (C₃, C₅), 130.34 (C₄), 145.78 (C_α), 128.56 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 439 (4.59), 600 (3.30), 652 (3.73).

H₄T(2-Cl)PP(CHCl₂COO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 1.3(4H, br, s, NH), 7.85-8.02 (8H_m and 4H_p, br, meta and para-positions relative to the C atom attached to the meso position), 8.34-8.47(4H_o, br, ortho-position relative to C atom attached to meso position), 8.65-8.71 (8H_β, br); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.20 (C_{meso}), 137.76 (C₁), 138.52 (C₂), 129.07 (C₃, C₄), 126.73 (C₅), 137.53 (C₆), 145.58(C_α), 130.09 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 435 (4.47), 582 (3.36), 632 (3.45).

S1f: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrins dication with CH₂CICOOH

H₄TPP(CH₂CICOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 8.009-8.078 (8H_m and 4H_p, m), 8.7 (8H_o, m), 8.78 (8H_β, s); no signal was observed for the NH protons at 20 ⁰C.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 122.63 (C_{meso}), 140.26 (C₁), 138.19 (C₂, C₆), 128.81 (C₃, C₅), 129.82 (C₄), 145.93 (C_α), 128.22 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm: 440 , 608, 659.

H₄T(4-OMe)PP(CH₂CICOO)₂. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 7.57-7.59 (8H_m and 8H_o, d), 8.58 (8H_β, s), 4.19 (12H_{Me}, s); no signal was observed for the NH protons at 20 ^oC.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 122.18 (C_{meso}), 133.44 (C₁), 139.95 (C₂, C₆), 114.05 (C₃, C₅), 161.52 (C₄), 146.13 (C_α), 128.13 (C_β), 56.28 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm: 452, 693.

H₄T(2-Me)PP(CH₂ClCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.72-7.8 (8H_m and 4H_p, br, meta and paraposition relative to C atom attached to meso position), 8.21-8.28 (4H_o, br, ortho-position relative to C atom attached to meso position), 8.73-8.75 (8H_β, br), 2.24-2.32 (H_{Me}, m); no signal was observed for the NH protons at 20 °C.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.3 (C_{meso}), 140.3 (C₁, C₂), 129.8 (C₃), 129.5 (C₄), 124.8 (C₅), 135.5 (C₆), 145.15 (C_α), 129.8 (C_β), 21.93 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max}/nm: 434, 584, 635.

H₄T(4-Me)PP(CH₂ClCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.85-7.87 (8H_m, d), 8.5334-8.56 (8H_o, d), 8.64 (8H_β, s), 2.71 (12H_{Me}, s); no signal was observed for the NH protons at 20 0 C.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 122.8 (C_{meso}), 137.43 (C₁), 138.64 (C₂, C₆), 129.22 (C₃, C₅), 140.5 (C₄), 145.8 (C_α), 128.22 (C_β), 21.48 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm: 445, 670.

H₄T(2-Cl)PP(CH₂ClCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.8-7.99 (8H_m and 4H_p, br, meta and parapositions relative to the C atom attached to the meso position), 8.3-8.5 (4H_o, br, ortho-position relative to C atom attached to meso position), 8.70-8.72 (8H_β, br); no signal was observed for the NH protons at 20 $^{\circ}$ C.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 118.72 (C_{meso}), 137.7 (C₁), 137.83 (C₂), 128.28 (C₃, C₄), 126.46 (C₅), 137.53 (C₆), 145.7 (C_α), 131.81 (C_β); UV-vis in CH₂Cl₂, λ_{max}/nm: 434, 581, 632.

H₄T(4-Cl)PP(CH₂ClCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 7.98 (8H_m, d), 8.49 (8H_o, d), 8.74 (8H_β, s); no signal was observed for the NH protons at 20 ^oC.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 121.8 (C_{meso}), 138.44 (C₁), 139.3 (C₂, C₆), 128.9 (C₃, C₅), 137.4 (C₄), 145.78 (C_α), 128.6 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm: 443, 660.

S1g: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the porphyrin dications with HCOOH

H₄**TPP(HCOO)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 7.777 (8H_m and 4H_p, d), 8.174 (8H_o, d), 8.828 (8H_β, s); no signal was observed for the NH protons at 20 °C, but at -60 °C, the NH resonance was observed at δ 0.49 ppm¹.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 123.26 (C_{meso}), 139.23 (C₁), 138.85 (C₂, C₆), 129 (C₃, C₅), 130.70 (C₄), 145.67 (C_α), 128.78 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 439 (5.75), 604 (4.42), 657 (4.89).

 $H_4T(4-OMe)PP(HCOO)_2$. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: 7.532 (8H_m, d), 8.547 (8H_o, d), 8.56 (8H_β, s), 4.162 (12H_{Me}, s); no signal was observed for the NH protons at 20 °C, but at -60 °C, the NH resonance was observed at δ

0.42 ppm¹.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ /ppm: 122.59 (C_{meso}), 132.67 (C₁), 140.31 (C₂, C₆), 114.62 (C₃, C₅), 162.13 (C₄), 145.99 (C_α), 128.46 (C_β), 55.89 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 452 (5.36), 695 (4.73).

H₄T(2-Me)PP(HCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.863-7.9 (8H_m and 4H_p, br, meta and para-position relative to C atom attached to meso position), 8.254-8.332 (4H_o, br, ortho-position relative to C atom attached to meso position), 8.73-8.76 (8H_β, br), 2.144-2.203 (H_{Me}, m); no signal was observed for the NH protons at 20 °C.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 121.69 (C_{meso}), 138.12 (C₁), 140.86 (C₂), 129.53 (C₃), 129.56 (C₄), 125.62 (C₅), 136.54 (C₆), 145.63 (C_α), 130.60 (C_β), 21.03 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max}/nm (logε): 433 (5.79), 582 (4.49), 635 (4.69).

H₄T(4-Me)PP(HCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.88-7.91 (8H_m, d), 8.533-8.553 (8H_o, d), 8.7 (8H_β, s), 2.767 (12H_{Me}, s); no signal was observed for the NH protons at 20 °C.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 123.1 (C_{meso}), 136.87 (C₁), 138.86 (C₂, C₆), 129.63 (C₃, C₅), 141.34 (C₄), 145.75 (C_α), 128.68 (C_β), 21.62 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 443 (5.88), 672 (5.09).

H₄T(2-CI)PP(HCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.92-7.95 (8H_m and 4H_p, br, meta and para-positions relative to the C atom attached to the meso position), 8.4-8.5 (4H_o, br, ortho-position relative to C atom attached to meso position), 8.78-8.826 (8H_β, br); no signal was observed for the NH protons at 20 ^oC.; ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.24 (C_{meso}), 137.83 (C₁), 138.02 (C₂), 129.87 (C₃, C₄), 126.62 (C₅), 136.84 (C₆), 145.57 (C_α), 132.55 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 432 (5.65), 580 (4.41), 631 (4.52).

H₄T(4-Cl)PP(HCOO)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ /ppm: 7.746 (8H_m, d), 8.4 (8H_o, d), 8.674 (8H_β, s); no signal was observed for the NH protons at 20 °C, but at -60 °C, the NH resonance was observed at δ 0.19 ppm¹.; ¹³C NMR (~100 MHz, CDCl₃, TMS), δ /ppm: 122.17 (C_{meso}), 138.09 (C₁), 139.59 (C₂, C₆), 129.19 (C₃, C₅), 137.54 (C₄), 145.66 (C_α), 128.94 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 442 (5.65), 662 (4.91).

S2(a,b): ¹H NMR spectra of H₂TPP and the expansion of aromatic region

S2(c,d): ¹³C NMR spectra of H₂TPP and the expansion of aromatic region

S3(a,b): ¹H NMR spectra of H₂T(4-OMe)PP and the expansion of aromatic region

S3(c,d): ${}^{13}C$ NMR spectra of H₂T(4-OMe)PP and the expansion of aromatic region

S4(a,b): ¹H NMR spectra of $H_2T(2-Me)PP$ and the expansion of aromatic region

S5(a,b): ¹H NMR spectra of $H_2T(4-Me)PP$ and the expansion of aromatic region

S4(c,d): ${}^{13}C$ NMR spectra of H₂T(2-Me)PP and the expansion of aromatic region

S5(c,d): ${}^{13}C$ NMR spectra of H₂T(4-Me)PP and the expansion of aromatic region

S6(a,b): ¹H NMR spectra of $H_2T(2-CI)PP$ and the expansion of aromatic region

S7(a,b): ¹H NMR spectra of $H_2T(4-CI)PP$ and the expansion of aromatic region

S8(a,b): ¹H NMR spectra of H_4 TPP(CF₃COO)₂ and the expansion of aromatic region

S9(a,b,c): ¹H NMR spectra of H_4 TPP(HCOO)₂, the expansion of aromatic region and fffect of temperature on the chemical shifts of the protons of H_4 TPP(HCOO)₂ in CDCl₃⁷

See Ref. 7 for more details

S10(a,b): ¹H NMR spectra of H₄TPP(CH₂ClCOO)₂ and the expansion of aromatic region

S10(c,d): ¹³C NMR spectra of H₄TPP(CH₂ClCOO)₂ and the expansion of aromatic region

S11(a,b): ¹H NMR spectra of H₄TPP(CHCl₂COO)₂ and the expansion of aromatic region

S12(a,b): ¹H NMR spectra of H_4 TPP(Cl)₂ and the expansion of aromatic region

S12(c,d): ${}^{13}C$ NMR spectra of H₄TPP(CI)₂ and the expansion of aromatic region

S13(a,b): ¹H NMR spectra of H_4 TPP(ClO₄)₂ and the expansion of aromatic region

S14: Double walled cylindrical glass vessel equipped with water circulation used for the photooxidation reactions (10 W red or blue LED lamps or a 200 W white mercury compact fluorescent lamp (CFL) were used as the light source).

S15:¹³C NMR data of Cyclooct-1-en-3-yl hydroperoxide

Cyclooct-1-en-3-yl hydroperoxide. ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 32.85 (C₄), 26.20 (C₅), 26.41 (C₆), 23.76 (C₇), 28.90 (C₈), 129.75 (C_{unsat}), 131.88 (C_{unsat}), 82.88 (COOH).

The ¹³C NMR data of Cyclooct-1-en-3-yl hydroperoxide as the sole product is consistent with the previously reported data.^{8,9}

1 A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org. Chem., 1967, 32, 476.

2 R. J. Abraham, G. E. Hawkes, M. F. Hudson, and Kevin M. Smith, J. Chem. Soc., Perkin Trans. 2, 1975, 204-211.

3 A. Gradillas, C. del Campo, J. V. Sinisterra and E. F. Llama, J. Chem. Soc., Perkin Trans. 1, 1995, 2611.

4 S. S. Eaton and G. R. Eaton, Inorg. Chem., 1976, 15, 134.

5 D. Mohajer, S. Zakavi, S. Rayati, M. Zahedi, N. Safari, H. R. Khavasi and S. Shahbazian, *New J. Chem*. 2004, **28**, 1600.

6 R.W.A. Johnstone, M.L.P.G. Nanes, M.M. Pereira, R.W.A. Johnstone, A.M.de.A.R. Gonsalves, A.C. Serra, *Heterocycles*, 1996, **43**, 1425.

7. S. Zakavi, M. Najafi Ragheb, Inorg. Che. Commun., 2013, 36, 113.

8 R. D. Chambed, G. Sandford, A. Shah, Synth. Commun., 1996, 26, 1861.

9 R. W. Denny, A. Nikon, Org. React., 1973, 20, 133.