Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information

Boratriazines: Inducing luminescence through boron incorporation into a terpytype framework.

Muhammad Yousaf,^a Nathan J. Yutronkie,^a Raúl Castañeda,^a Jacob A. Klein ^a and Jaclyn Brusso^{*,a}

^a Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.

Contents (18 pages)

- Page S2NMR spectra
- Page S14 Molecular orbitals
- Page S15 Fluorescence data for F₂-Py₂BTA and F₂-Pm₂BTA
- Page S15 Molar extinction coefficient data for F₂-Py₂BTA, F₂-Pm₂BTA and PmAmBF₃
- Page S16 TD DFT vertical excitation energies
- Page S18 Crystallographic data

Figure S1. ¹H NMR spectrum of F₂-Py₂BTA in CDCl₃

Figure S2. ¹³C NMR spectrum of F_2 - Py_2BTA in CDCl₃

Figure S3. ¹¹B NMR spectrum of F_2 - Py_2BTA in CDCl₃

Figure S4. ¹⁹F NMR spectrum of F_2 - Py_2BTA in CDCl₃

-9.75 -9.03
-7.53
-7.26

Figure S5. ¹H NMR spectrum of F₂-Pm₂BTA in CDCl₃

Figure S6. ¹³C NMR spectrum of F_2 - Pm_2BTA in CDCl₃

Figure S7. ¹¹B NMR spectrum of F_2 - Pm_2BTA in CDCl₃

Figure S8. ¹⁹F NMR spectrum of F₂-Pm₂BTA in CDCl₃

Figure S9. ¹H NMR spectrum of PmAmBF₃ in CD₃CN

Figure S10. ¹³C NMR spectrum of PmAmBF₃ in CD₃CN

Figure S11. ¹¹B NMR spectrum of PmAmBF₃ in CD₃CN

Figure S12. ¹⁹F NMR spectrum of PmAmBF₃ in CD₃CN

Figure S13. Frontier molecular orbitals and energies of the F₂-Py₂BTA, F₂-Pm₂BTA and PmAmBF₃ from DFT calculations (B3LYP, 6-31G).

Compound	Abso	rption ^a	Fluorescence ^b		
_	λ_{max} (nm)	$(\varepsilon \times 10^4 \ LM^{-1} cm^{-1})$	$\lambda_{em}(nm)$	Quantum Yield ^c	
F ₂ -Py ₂ BTA	310	2.3	397	0.12	
F ₂ -Pm ₂ BTA	307	1.4	388	0.07	

Table S1. Fluorescence data for the benchmark fluorophores F₂-Py₂BTA and F₂-Pm₂BTA.

^{*a*} low energy absorption of F_2 - Py_2BTA and F_2 - Pm_2BTA in DCM from UV-Vis. ^{*b*} Measurements were made in DCM (dichloromethane). ^{*c*} Quantum yield were calculate at 22°C relative to 9,10-diphenylanthracene in ethanol (QY = 0.90) using Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies).

Table S2. Molar extinction coefficients (ϵ) of F₂-Py₂BTA, F₂-Pm₂BTA and PmAmBF₃ along with their corresponding wavelengths.

F2-Py2BTA		F ₂ - P	m ₂ BTA	PmAmBF ₃	
λ_{abs} (nm)	$(LM^{\ell}cm^{-\ell})$	λ_{abs} (nm)	$(LM^{\ell}cm^{-\ell})$	λ_{abs} (nm)	$(LM^{l}cm^{-l})$
324	19720	317	12720	320	489
310 280	11580	307 295	14015 10776	304 227	635 7533

	F ₂ -Py	F ₂ -Py ₂ BTA		F ₂ -Pm ₂ BTA		PmAmBF ₃	
k	E(eV)	f	E(eV)	f	E(eV)	f	
1	4.1154	0.4515	3.5015	0.0000	4.1920	0.0000	
2	4.1370	0.0000	3.7135	0.0000	4.5825	0.0055	
3	4.3078	0.0024	4.0622	0.2796	4.8527	0.0664	
4	4.6294	0.1542	4.3130	0.0000	5.0795	0.0039	
5	4.6927	0.0965	4.4048	0.0089	5.6628	0.0135	
6	4.7077	0.0000	4.4084	0.0000	5.7256	0.3731	
7	5.1376	0.0001	4.6683	0.0010	5.8142	0.0028	
8	5.1890	0.0001	4.8624	0.0606	6.2399	0.0001	
9	5.2176	.0233	4.9013	0.0000	6.2595	0.0019	
10	5.3439	0.0041	4.9560	0.2215	6.4273	0.0002	
11	5.3793	0.0000	4.9703	0.0587	6.9605	0.0398	
12	5.3843	0.0020	5.0603	0.0788	6.9847	0.0001	
13	5.4987	0.0277	5.0756	0.0198	7.0065	0.0004	
14	5.5133	0.0016	5.2797	0.0030	7.0711	0.2130	
15	5.5333	0.0000	5.2859	0.0000	7.0988	0.0134	
16	5.5612	0.2197	5.2865	0.0000	7.3725	0.0000	
17	5.6601	0.0188	5.4050	0.0000	7.4656	0.4011	
18	5.7248	0.0010	5.5061	0.0046	7.6039	0.0123	
19	5.9429	0.0004	5.5069	0.0153	7.6157	0.0008	
20	5.9517	0.0297	5.5306	0.0019	7.6971	0.0000	

Table S3. TD–DFT optical transitions^{*a*} for F₂-Py₂BTA, F₂-Pm₂BTA and PmAmBF₃.

^{*a*} TD-DFT (6-31G/B3LYP) level of theory on geometry optimized structures. k is order of excitation energy and f is oscillator strength.

Compound	Excitation Energy (eV)	Calculate d λ (nm)	Transition	Molecular Contribution	Oscillator Strength (<i>f</i>)
F ₂ -Py ₂ BTA	4.1154 4.6294 4.6927	301 267 264	HOMO HOMO-1 ↓ LUMO HOMO-3 ↓ LUMO	0.69836 0.69018 0.68831	0.4515 0.1542 0.0965
F2-Pm2BTA	4.0622 4.8624 4.9560	305 254 250	HOMO-1 → LUMO HOMO-3 LUMO HOMO-1 → LUMO HOMO-4 → LUMO HOMO-1 → LUMO+2	0.70295 0.55938 -0.37579 0.65539 -0.24728	0.2796 0.0000 0.2215
ґтатвг ₃	4.5827 5.7256 7.4656	255 216 175	HOMO \rightarrow LUMO HOMO-2 \rightarrow LUMO HOMO-5 \rightarrow LUMO HOMO-2 \rightarrow LUMO+1	0.70088 0.68647 0.52270 0.37437	0.0664 0.3731 0.2130

Table S4. Selected TD–DFT optical transitions for F₂-Py₂BTA, F₂-Pm₂BTA and PmAmBF₃.

	F ₂ -Py ₂ BTA	F ₂ -Pm ₂ BTA	PmAmBF ₃
Formula	$C_{12}H_{10}BF_2N_5$	$C_{10}H_8BF_2N_7$	C ₅ H ₆ BF ₃ N ₄
FW (g/mol)	273.06	359.97	189.95
Crystem System	Triclinic	Orthorhombic	Monoclinic
Space Group	P-1	Pbca	$P-2_{1}/n$
a (Å)	7.7785 (3)	9.7915(7)	8.1901(2)
b (Å)	8.8782(3)	10.7841(8)	6.2150(2)
c (Å)	9.6210(4)	28.665(2)	14.8496(4)
α (°)	91.401(2)	90	90
β (°)	102.708(2)	90	92.216(2)
γ (°)	109.795(2)	90	90
$V(Å^3)$	606.289(4)	3026.8(4)	755.30(4)
Z	2	8	4
D_{calc} (Mg·m ⁻³)	1.496	1.580	1.670
T(K)	200	200	200
μ (mm ⁻¹)	0.116	0.459	0.159
2θ range (°)	4.36 to 57.99	5.038 to 51.998	5.49 to 57.99
No. of total reflections	10741	13127	6752
No. of unique reflections	3153	2913	1873
R _{int}	0.0268	0.0608	0.0163
R_1, wR_2 [I>=2 σ (I)]	0.0535, 0.1579	0.0692, 0.1794	0.0341, 0.0975
Largest diff. peak/hole	0.518 and -0.186	0.289 and -0.459	0.253 and -0.184
_(e·Å-3)			

Table S5. Crystallographic data for F2-Py2BTA, F2-Pm2BTA and PmAmBF3.