Electronic Supplementary Material Polymer monolith containing embedded covalent organic framework for effective enrichment of benzophenones Huiqi Wang a, Zheng Li a, Wei Feng b, *, Qiong Jia a, * ^a College of Chemistry, Jilin University, Changchun 130012, China ^b The First Hospital of Jilin University, Changchun 130021, China *Corresponding authors. E-mail addresses: doctorfengwei@126.com (W. Feng), jiaqiong@jlu.edu.cn (Q. Jia) ## **CONTENTS** Figures S1-S5 **Tables S1-S3** Figure S1 SEM images of (A) COF-COOH and (B) COF-SH Figure S2 (A) IR spectra of COF-COOH and COF-SH. (B) XPS spectrum for S element of COF-SH Figure S3 Thermal analyses of (A) COF- COOH and (B) COF-SH Figure S4 SEM images of COF@poly(GMA-EDMA) monolith (A) before and (B) after extraction **Figure S5** Chromatograms of BPs in serum samples obtained by PMME procedures: (a) unspiked sample; (b) sample spiked with Level 1; (c) sample spiked with Level 2; peaks: (1) DHBP, (2) HBP, (3) DHMBP, and (4) HMBP Table S1 Permeability and SP values of different monoliths | Monomers (% w/v | v) | Porogen (% w/w) | | Permeability ($\times 10^{-9} \text{ cm}^2$) ^a | SP | | |-----------------|-----------------|-----------------|---|---|---|--| | GMA | EDMA | Cyclohexanol | Dodecanol | | | | | 24 | 16 | 54 | 6 | 5.13 | 0.44 | | | 21 | 14 | 58.5 | 6.5 | 5.69 | 0.42 | | | 18 | 12 | 63 | 7 | 6.42 | 0.39 | | | | GMA
24
21 | 24 16
21 14 | GMA EDMA Cyclohexanol 24 16 54 21 14 58.5 | GMA EDMA Cyclohexanol Dodecanol 24 16 54 6 21 14 58.5 6.5 | GMA EDMA Cyclohexanol Dodecanol 24 16 54 6 5.13 21 14 58.5 6.5 5.69 | | ^a The permeability of the monolithic columns was determined with MeOH as the mobile phase at 0.3 mL min⁻¹ Table S2 Comparison of various methods for the determination of the BPs. | Analysts | Samples | Pretreatment methods | Analytical techniques | LOD (ng mL ⁻¹) | EF | Ref. | |-------------------|-------------------------------|----------------------|-----------------------|----------------------------|------------------------|-----------| | HBP, DHBP, HMBP, | Human serum samples | DLLME | UPLC-MS/MS | 0.1-0.2 | _ | 1 | | DHMBP | | | | | | | | HBP, DHBP, HMBP | Sunscreen samples | DLLME | CE | 3.9-6.7 | 32.0-40.5 ^a | 5 | | HBP, DHBP, HMBP | Water samples | DLLME | HPLC | 2.4-6.4 | 18.9-21.7 | 7 | | HBP, DHBP, HMBP | Water samples | Magnetic PMME | HPLC | 0.4-0.8 | _ | 8 | | HBP, DHBP, HMBP, | Human menstrual blood samples | DLLME | UHPLC-MS/MS | 0.1-0.3 | _ | 9 | | DHMBP | | | | | | | | HBP, DHBP, HMBP, | Water samples | Dispersive SPME | HPLC-MS/MS | 0.16-1.21 | 17.3-49.2 | 12 | | DHMBP | | | | | | | | DHBP, HMBP, DHMBP | Human serum samples | DLLME | HPLC-MS/MS | 7-8 | $3.1-7.4^b$ | 48 | | DHBP, HMBP | Toner samples | DSPE | HPLC | 0.9-1.2 | _ | 50 | | HBP, DHBP, HMBP, | Human urine and serum samples | PMME | HPLC | 0.4-0.7 | 17.5-40.3 | This work | | DHMBP | | | | | | | ^a EF was defined as the ratio between the analyte concentration in the final diluted phase (C_f) and the initial concentration of analyte (C_0) within the sample. ^b EF was defined as the ratio between the analyte concentration in the organic sedimented phase (C_{sed}) and the initial concentration of this compound in the aqueous phase (C_0) . **Table S3** Recoveries (%) of the four BPs in real samples (n = 3) | Sample | | | DHBP | HBP | DHMBP | HMBP | |----------------|---------------------------------|---------|-----------------|----------------|-----------------|-----------------| | Urine sample 1 | Measured (ng mL ⁻¹) | | < LOD | < LOD | 23.9 | < LOD | | | Recovery \pm RSD (%) | Level 1 | 81.2 ± 5.4 | 79.5 ± 2.0 | 86.5 ± 2.3 | 100.8 ± 5.1 | | | | Level 2 | 82.7 ± 6.0 | 94.5 ± 4.9 | 104.5 ± 5.6 | 93.3 ± 6.7 | | Urine sample 2 | Measured (ng mL ⁻¹) | | 14.5 | < LOD | 23.3 | < LOD | | | Recovery \pm RSD (%) | Level 1 | 101.6 ± 3.2 | 82.7 ± 3.1 | 95.5 ± 2.0 | 88.1 ± 6.9 | | | | Level 2 | 98.0 ± 5.7 | 93.9 ± 5.5 | 82.7 ± 2.6 | 95.6 ± 0.7 | | Urine sample 3 | Measured (ng mL ⁻¹) | | 6.4 | < LOD | 36.6 | < LOD | | | Recovery \pm RSD (%) | Level 1 | 91.4 ± 6.7 | 93.5 ± 1.5 | 83.5 ± 5.4 | 85.5 ± 5.1 | | | | Level 2 | 87.4 ± 5.6 | 92.2 ± 4.1 | 91.9 ± 5.2 | 103.7 ± 3.6 | | Serum sample 1 | Measured (ng mL ⁻¹) | | 22.6 | 15.6 | 16.4 | 6.2 | | | Recovery \pm RSD (%) | Level 1 | 97.4 ± 5.6 | 89.1 ± 3.1 | 88.2 ± 4.4 | 99.4 ± 5.1 | | | | Level 2 | 102.0 ± 7.4 | 99.0 ± 0.9 | 97.7 ± 5.4 | 89.0 ± 6.7 | | Serum sample 2 | Measured (ng mL ⁻¹) | | < LOD | 34.9 | 105.1 | < LOD | | | Recovery \pm RSD (%) | Level 1 | 87.9 ± 6.5 | 96.4 ± 7.5 | 97.4 ± 2.3 | 85.4 ± 6.1 | | | | Level 2 | 99.4 ± 5.2 | 96.8 ± 7.7 | 97.2 ± 7.0 | 105.0 ± 8.2 | |----------------|---------------------------------|---------|----------------|----------------|-----------------|-----------------| | Serum sample 3 | Measured (ng mL ⁻¹) | | < LOD | 22.3 | 25.6 | 14.3 | | | Recovery \pm RSD (%) | Level 1 | 97.9 ± 3.5 | 98.4 ± 3.5 | 107.7 ± 1.3 | 95.4 ± 2.5 | | | | Level 2 | 79.8 ± 5.9 | 86.8 ± 0.7 | 92.0 ± 7.2 | 105.7 ± 5.0 |