Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting information for the paper

Dinuclear Rhenium pyridazine complexes containing bridging chalcogenide anions: synthesis, characterization and computational study

Lorenzo Veronese,^{a,b} Elsa Quartapelle Procopio,^a Daniela Maggioni,^{a,c} Pierluigi Mercandelli,*^{a,c} Monica Panigati*^{a,b,c}

^a Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133, Milano, Italy.

^b Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche (ISMAC-CNR), Via E. Bassini 15, 20133 Milano, Italy.

^c Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy.

Table S1. A List of Computed Molecular Orbital Energies [eV] for the Complexes [Re₂(μ -X)₂(CO)₆(μ -pydz)], X = OPh (**1a**), SPh (**2a**), SePh (**3a**), TePh (**4a**), OMe (**1b**), SMe (**2b**), SeMe (**3b**), TeMe (**4b**)^{*a*}

		1 a	2a	3a	4a	1b	2b	3b	4b
"eg"	LUMO + 5	-0.38	-0.55	-0.55	-0.59	-0.25	-0.31	-0.35	-0.47
	LUMO + 4	-0.75	-0.78	-0.79	-0.83	-0.60	-0.60	-0.63	-0.69
	LUMO + 3	-0.77	-1.02	-1.08	-1.09	-0.75	-1.06	-1.14	-1.13
	LUMO + 2	-0.99	-1.04	-1.22	-1.39	-0.96	-1.06	-1.20	-1.34
π* pydz	LUMO + 1	-2.52	-2.40	-2.36	-2.31	-2.44	-2.46	-2.44	-2.39
	LUMO	-3.36	-3.22	-3.18	-3.13	-3.27	-3.28	-3.25	-3.21
"t _{2g} " (+ <u><i>π</i> Ph</u>)	HOMO	-6.31	-6.27	-6.23	-6.09	-6.15	-6.37	-6.29	-6.13
	HOMO - 1	<u>-6.42</u>	<u>-6.40</u>	-6.45	-6.43	-6.30	-6.42	-6.45	-6.46
	HOMO - 2	-6.44	-6.46	<u>-6.50</u>	-6.55	-6.63	-6.53	-6.65	-6.67
	HOMO - 3	<u>-6.48</u>	-6.78	-6.77	-6.76	-6.98	-6.99	-6.95	-6.89
	HOMO - 4	-6.81	-6.93	-6.98	-7.00	-7.01	-7.00	-6.98	-7.00
	HOMO - 5	<u>-7.00</u>	-7.05	-7.02	-7.03	-7.05	-7.07	-7.09	-7.09
	HOMO - 6	-7.02	-7.19	-7.15	-7.10				
	HOMO - 7	-7.11	<u> </u>	<u> </u>	<u> </u>				
	HOMO - 8	-7.16	<u> </u>	<u> </u>	<u> </u>				
	HOMO - 9	-7.20	<u> </u>	<u> </u>	<u> </u>				

^{*a*} Data for **1a** and **1b** are taken from our previous work (ref. S1).

Table S2. Computed Excitation Energies [nm, eV] and Oscillator Strengths (*f*, in parenthesis) for the Complexes $[\text{Re}_2(\mu-X)_2(\text{CO})_6(\mu-\text{pydz})]$, X = OPh (**1a**), SPh (**2a**), SePh (**3a**), TePh (**4a**), OMe (**1b**), SMe (**2b**), SeMe (**3b**), TeMe (**4b**) ^{*a*}

	1 a	2a	3 a	4 a	1b	2b	3b	4b			
Gas-pha	se values										
$\lambda_{d-d}(f)$	256, 4.84 (0.020)	262, 4.73 (0.057)	258, 4.80 (0.028)	262, 4.73 (0.184)	257, 4.83 (0.068)	237, 5.23 (0.061)	238, 5.22 (0.049)	252, 4.91 (0.050)			
						282, 4.40 (0.067)	288, 4.30 (0.028)				
$\lambda_{\text{MLCT}}(f)$	387, 3.20 (0.130)	368, 3.37 (0.047)	363, 3.42 (0.042)	359, 3.45 (0.033)	265, 4.68 (0.030)	359, 3.46 (0.031)	300, 4.13 (0.035)	313, 3.96 (0.046)			
	409, 3.03 (0.028)	403, 3.08 (0.024)	404, 3.07 (0.028)	408, 3.04 (0.031)	401, 3.09 (0.156)	398, 3.11 (0.139)	382, 3.24 (0.031)	402, 3.09 (0.032)			
	544, 2.28 (0.057)	415, 2.99 (0.059)	418, 2.97 (0.051)	413, 3.00 (0.056)	564, 2.20 (0.048)	404, 3.07 (0.029)	404, 3.07 (0.155)	408, 3.04 (0.141)			
		528, 2.35 (0.029)	509, 2.44 (0.028)	499, 2.48 (0.017)		540, 2.30 (0.045)	518, 2.39 (0.037)	507, 2.45 (0.023)			
Dichloromethane solution values (PCM) ^b											
$\lambda_{\text{MLCT}}(f)$	285, 4.35 (0.022)	328, 3.78 (0.036)	326, 3.80 (0.035)	324, 3.83 (0.021)	297, 4.17 (0.031)	318, 3.90 (0.029)	340, 3.64 (0.030)	359, 3.45 (0.032)			
	327, 3.79 (0.015)	353, 3.51 (0.026)	358, 3.46 (0.029)	364, 3.40 (0.030)	361, 3.43 (0.188)	371, 3.34 (0.205)	376, 3.30 (0.200)	380, 3.26 (0.186)			
	351, 3.54 (0.171)	371, 3.34 (0.072)	374, 3.31 (0.057)	372, 3.33 (0.032)	463, 2.68 (0.061)	447, 2.77 (0.066)	435, 2.85 (0.054)	429, 2.89 (0.034)			
	408, 3.04 (0.010)	397, 3.12 (0.057)	397, 3.13 (0.065)	392, 3.16 (0.080)							
	441, 2.81 (0.072)	442, 2.81 (0.045)	431, 2.88 (0.042)	427, 2.90 (0.026)							

 $^{a} \lambda_{d-d}$ and λ_{MLCT} refer to the higher and lower energy bands, respectively. Data for **1a** and **1b** in the gas phase are taken from our previous work (ref. S1). b The higher energy band λ_{d-d} is almost unaffected by solvation. As a consequence, only the PCM λ_{MLCT} values are reported.

Figure S1. Isodensity surface plots of some relevant molecular orbitals of $[\text{Re}_2(\mu-\text{SMe})_2(\text{CO})_6(\mu-\text{pydz})]$ **2b**.

Figure S2. ¹H NMR at variable temperature (CD_2Cl_2 , 9.4 T) for disulfide derivative **2a** (the sharp signals overlapping the phenyl signals and marked with an asterisk are due to an impurity). Inset: 10x enhancement of the 168 K trace, range 8.2-6.6 ppm.

*

Figure S3. Selected aromatic and aliphatic regions of ¹H NMR variable temperature spectra of a solution of **3b** (CD₂Cl₂, 9.4 T).

References

(S1) A. Raimondi, M. Panigati, D. Maggioni, L. D'Alfonso, P. Mercandelli, P. Mussini and G. D'Alfonso, *Inorg. Chem.*, 2012, **51**, 2966–2975.