Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

ELECTRONIC SUPPORTING INFORMATION

FOR

Coumarin-chalcone hybrid as selective and sensitive colorimetric and turn-on fluorometric sensor for Cd²⁺ detection

Shaily^{*a,b}, Ajay Kumar^b and Naseem Ahmed^{*a}

^a Department of Chemistry, Indian Institute of Technology, Roorkee–247667, India.

^b Department of Chemistry, D.B.S. (P.G.) College Dehradun–248001, India.

E-mail: shailydbs@gmail.com & nasemfcy@iitr.ac.in Tel: +91 1332 285745.

Figure S1. ¹ H-NMR spectrum of 2a in CDCl ₃ .				
Figure S2. ¹³ C-NMR spectrum of 2a in CDCl ₃ .				
Figure S3. ¹ H-NMR spectrum of 1a in CDCl ₃ .				
Figure S4. ¹³ C-NMR spectrum of 1a in CDCl ₃ .				
Figure S5. FT-IR spectrum of 1a in KBr pellet.				
Figure S6. HRMS (ESI+) mass spectrum of 1a in CH ₃ CN.				
Figure S7. Absorbance Job's plot (stoichiometry determination of the $1a + Cd^{2+}$	S6			
complex) in HEPES-buffered solution (20 mM, CH_3CN : H_2O , 3:7, v/v, pH 7.0).				
Figure S8. Normalized response of absorption signal to changing Cd^{2+} ions	S6			
concentrations for 1a .				
Figure S9. Normalized response of fluorescence signal to changing Cd ²⁺ ions	S7			
concentrations for 1a .				
Figure S10. ¹ H-NMR titration spectra of 1a with different equivalents (0, 5 and 10				
equiv) Cd ²⁺ .	S7			
Figure S11. HRMS (ESI+) mass spectrum of $1a + Cd^{2+}$ (1:1) complex in CH ₃ CN.	S8			
Table S1 Comparison of analytical data of fluorescence method for Cd^{2+} sensers				
Table ST Compansion of analytical data of hubrescence method for Cu ²⁺ sensors.	S9			
References	S10			

Figure S1. ¹H-NMR spectrum of 2a in CDCl₃.

Figure S2. ¹³C-NMR spectrum of 2a in CDCl₃.

Figure S3. ¹H-NMR spectrum of **1a** in CDCl₃.

Figure S4. ¹³C-NMR spectrum of 1a in CDCl₃.

Figure S5. FT-IR spectrum of 1a in KBr pellet.

Figure S6. HRMS (ESI+) mass spectrum of 1a in CH_3CN .

Figure S7. Job's plot (stoichiometry determination of the $[1a + Cd^{2+}]$ complex) in HEPESbuffered solution (20 mM, CH₃CN: H₂O, 3:7, v/v, pH 7.0).

Figure S8. Normalized response of absorbance to changing Cd²⁺ ions concentrations for **1a**.

Figure S9. Normalized response of fluorescence signal to changing Cd²⁺ ions concentrations for **1a**.

Figure S10. ¹H-NMR titration spectra of **1a** with different equivalents (0, 5 and 10 equiv) of Cd²⁺.

Figure S11. HRMS (ESI+) mass spectrum of $1a + Cd^{2+}$ (1:1) complex in CH₃CN.

Type of probe	LOD	Merits of probe	Mode of assay	Reference
Porphyrin-based chemosensor	0.073 ×10 ⁻⁶ M	Colorimetric and Fluorometric	Ratiometric	1
C3-Symmetric Schiff-Base probe	5.57 ×10⁻6 M	Colorimetric and Fluorometric	Ratiometric	2
Rhodamine diaminomaleonitrile linked probe (RD- 1)	1.85 × 10 ⁻⁸ M	On Fluorescence Sensor	Enhancement	3
Diarylethene with 1,8-naphthyridine unit	1.97 × 10 ⁻⁷ M	Logic circuit application	Enhancement	4
Tetrakis(4-nitrophenyl) porphyrin	0.276 × 10 ⁻⁶ M	Real Sample analysis	Enhancement	5
Chromone Schiff-Base	1.1 × 10 ⁻⁶ M	Fluorometric	Enhancement	6
Quinoline-based fluorescent chemosensor	1.7 × 10 ⁻⁴ M	Simultaneous detection of Zn ²⁺ and Cd ²⁺	Enhancement	7
Porphyrin-based fluorescent probe	3.2 × 10 ^{−8} M	Cell imaging	Ratiometric	8
BODIPY derivative	7.7 × 10 ⁻⁸ M	Living Cells Imaging	Enhancement	9
Rhodamine-quinoline based probe	7.09 × 10 ⁻⁷ M	Colorimetric and fluorogenic	Enhancement	10
Rhodamine-based Fluorescent Chemosensor	4.7 × 10 ⁻⁸ mol/L	Colorimetric and Fluorometric	Enhancement	11
Quinoline-based probe	2.363 × 10 ⁻⁸ M	Live cells detection of Cd ²⁺	Ratiometric	12
4-Amino-3-hydrazino-5-mercapto-1,2,4- triazol based probe	3.0 × 10 ⁻⁸ M	Cd ²⁺ detection using modified gold nanoparticles	Ratiometric (UV–vis)	13
In-situ generated Chiral CdS quantum dots	5.97 × 10 ⁻⁵ M	Real water samples analysis	Enhancement	14
A new Coumarin based Fluorescent sensor	1.01 × 10 ⁻⁸ M	Colorimetric and Fluorometric	Enhancement	15
Coumarin-chalcone hybrid	5.84 × 10 ⁻⁸ M	Colorimetric turn-on Fluorometric sensor	Enhancement	This work

References

- 1. Y. Lv, L. Wu, W. Shena, J. Wang, G. Xuana and X. Sun, *J. Porphyrins Phthalocyanines* 2015, **19**, 1.
- X.-J. Jiang, M. Li, H.-L. Lu, L.-H. Xu, H. Xu, S.-Q. Zang, M.-S. Tang, H.-W. Hou and T. C. W. Mak, *Inorg. Chem.* 2014, 53, 12665.
- 3. P. Sakthivel, K. Sekar, G. Sivaraman and S. Singaravadivel, J. Fluoresc., 2017, 27, 1109.
- 4. X. Zhang, R. Wang, C. Fan, G. Liu and S. Pu, *Dyes Pigm.* 2017, **139**, 208.
- 5. R. Khani, E. Ghiamati, R. Boroujerdi, A. Rezaeifard and M. H. Zaryabi *Spectro. Acta Part A: Mole. Biomol. Spect.* 2016, **163**, 120.
- 6. J. Yan, L. Fan, J.-C. Qin, C.-R. Li and Z.-Y. Yang, J. Fluoresc., **2016**, *26*, 1059-1065.
- 7. Y. Ma, F. Wang, S. Kambam and X. Chen, Sens. Actuators, B 2013, 188, 1116.
- W.-B. Huang, W. Gu, H.-X. Huang, J.-B. Wang, W.-X. Shen, Y.-Y. Lv and J. Shen, Dyes Pigm. 2017, DOI: 10.1016/j.dyepig.2017.05.001.
- S. B. Maity, S. Banerjee, K. Sunwoo, J. S. Kim and P. K. Bharadwaj, *Inorg. Chem.* 2015, 54, 3929.
- S. Goswami, K. Aich, S. Das, A. K. Das, A. Manna and S. Halder, *Analyst* 2013, **138**, 1903.
- 11. W. Su, S. Yuan and E. Wang, J. Fluoresc. 2017, DOI 10.1007/s10895-017-2124-0.
- 12. Z. Shi, Q. Han, L. Yang, H. Yang, X. Tang, W. Dou, Z. Li, Y. Zhang, Y. Shao, L. Guan and W. Liu, *Chem. Eur. J.* 2015, **21**, 290.
- 13. A.-J. Wang, H. Guo, M. Zhang, D.-L. Zhou, R.-Z. Wang and J.-J. Feng, *Microchim Acta* 2013, **180**, 1051.
- P. Sianglam, S. Kulchat, T. Tuntulani and W. Ngeontae, Spectrochim. Acta, Part A 2017, 183, 408.
- 15. C. Kumari, D. Sain, A. Kumar, S. Debnath, P. Saha and S. Dey *Dalton Trans.*, 2017, **46**, 2524.