**Electronic Supplementary Information (ESI) for New Journal of Chemistry** 

**Electronic Supporting Information** 

# **Enhanced Intracellular Uptake in Vitro by Glucose Functionalized Nanopesticides**

Jin-Liang Jia,<sup>‡ a,b</sup> Xiao-Yong Jin, <sup>‡ a</sup> Li Zhu<sup>b</sup>, Zhi-Xiang Zhang,<sup>a</sup> Wen-Long Liang<sup>a</sup>,

Guo-Dong Wang<sup>a,b</sup>, Feng Zheng<sup>a,b</sup>, Xin-Zhou Wu<sup>a</sup> and Han-Hong Xu<sup>\*a</sup>

<sup>a</sup> State Key Laboratory for Conservation and Utilization of Subtropical Agro-

bioresources, South China Agricultural University, Guangzhou 510642, P. R. China.

<sup>b</sup> College of Materials and Energy, South China Agricultural University,

Guangzhou 510642, P. R. China.

<sup>‡</sup> These authors contributed equally to this work.

\*Address correspondence to

hhxu@scau.edu.cn

### **Table of contents**

| Synthesis of Glc-TA (4)                                              | S2 |
|----------------------------------------------------------------------|----|
| Synthesis of R-OH (5)                                                | S4 |
| Synthesis of R-TA (6)                                                | S4 |
| Synthesis of FITC-TA (7)                                             | S4 |
| Fig. S1. <sup>1</sup> H NMR spectrum of compound 4                   |    |
| Fig. S2. <sup>13</sup> C NMR spectrum of compound 4                  | S6 |
| Fig. S3. <sup>1</sup> H NMR spectrum of compound 5                   | S6 |
| Fig. S4. <sup>13</sup> C NMR spectrum of compound 5                  | S7 |
| Fig. S5. <sup>1</sup> H NMR spectrum of compound 6                   | S7 |
| Fig. S6. Zeta potentials of all Au NPs dispersed in aqueous solution | S8 |

# Synthesis of the ligands



Scheme S1. Synthetic pathway of compound 4; Reagents and conditions: (1) TMSCl, HMDS, pyridine, r.t., overnight; (2) acetone, methanol, acetic acid, 40  $^{\circ}$ C, 4 h; (3) DCC, DMAP, CH<sub>2</sub>Cl<sub>2</sub>, 60  $^{\circ}$ C, 0.5 h; (4) TFA, CH<sub>2</sub>Cl<sub>2</sub>, 0  $^{\circ}$ C, 1.5 h.

## Synthesis of compounds 1 and 2

Compounds 1 and 2 were prepared according to the procedure described in the

early reported literature.<sup>1</sup>

#### Synthesis of compound 3

A mixture of the prepared 2 (1.3754 g), DL-Thioctic acid (0.6390 g), DCC (0.7913 g) and DMAP (10.0 mg) in dry  $CH_2Cl_2$  (35 mL) was stirred at 60 °C for 0.5 h. Then, the mixture was cooled down to room temperature, and the solution was stirred overnight. The solvent was evaporated under reduced pressure. Finally, the compound 3 was purified by the column chromatography.

#### Synthesis of compound 4

Compound 4 was obtained through deprotection of 3 by trifluoroacetic acid (178  $\mu$ L) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) at 0 °C. The mixture was kept for 1.5 h. The solvent was evapored under reduced pressure. The residue was purified by column chromatography to yield 4 as a yellow oil. <sup>1</sup>H NMR(CD<sub>3</sub>OD, 600 MHz):  $\alpha$ :  $\beta$  = 4:1,  $\delta$  5.08 (d, 1H, *J* = 3.6 Hz, H-1- $\alpha$ ), 4.47 (d, 1H, *J* = 7.8 Hz, H-1- $\beta$ ), 4.38 - 4.41 (m, 1H, H-6-1- $\beta$ ), 4.35 (d, 1H, *J* = 11.8 Hz, H-6-1- $\alpha$ ), 4.19 (dd, 1H, *J* = 5.2 Hz, H-6-2- $\alpha$ ), 4.16 - 4.17 (m, 1H, H-6-2- $\beta$ ), 3.93 - 3.96 (m, 1H, H-5), 3.67 (t, 1H, *J* = 9.3 Hz), 3.54 - 3.61 (m, 3H, S-CH<sub>2</sub>, S-CH), 3.14 - 3.19 (m, 1H, CH), 3.06 -3.14 (m, 1H, CH), 2.43 - 2.49 (m, 1H, S-CH-CH<sub>2</sub>), 2.35 (t, 2H, *J* = 7.3 Hz, COCH<sub>2</sub>- $\alpha$ ), 2.28 (t, 2H, *J* = 7.3 Hz, COCH<sub>2</sub>- $\beta$ ), 1.85-1.91 (m, 1H, S-CH-CH<sub>2</sub>), 1.16-1.74 (m, 6H, CH<sub>2</sub>). <sup>13</sup>C (CD<sub>3</sub>OD, 600 MHz):  $\delta$  173.89, 173.81, 96.77, 92.61, 76.46, 74.81, 73.94, 73.36, 72.38, 70.55, 70.31, 69.28, 63.91, 63.41, 56.10, 41.84, 39.88, 37.93, 34.24, 33.40, 29.87, 28.87, 28.39, 24.39, 23.03, 22.70, 13.01, 10.00.

#### Synthesis of Rotenone-Thioctic (R-TA)



Scheme S2. Synthetic pathway of compound 6; Reagents and conditions: (1) BBr<sub>3</sub>,  $CH_2Cl_2$ , -5 °C, 4 min; (2) NaHCO<sub>3</sub>, acetone, methanol, r.m, 2 h; (3) DCC, DMAP,  $CH_2Cl_2$ , r.m, overnight.

#### Synthesis of R-OH (5)

R-OH was synthesized as previously described.<sup>2, 3 1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz),  $\delta$  7.83 (d, 1H, J = 8.52 Hz, 11-H), 6.82 (s, 1H, 1-H), 6.49 (d, 1H, J = 8.4 Hz, 10-H), 6.43 (s, 1H, 4-H), 5.23 (t, 1H, J = 8.9 Hz, 5'-H), 5.13 (s, 1H, 2-OH), 5.07 and 4.93 (brs, both 1H, 7'-H<sub>2</sub>), 4.91 (m, 1H, 6a-H), 4.60 (dd, 1H, J = 12, 3 Hz, H-6a), 4.17 (d, 1H, J = 12 Hz, H-6b), 3.82 (s, 4H, OMe and 12a-H), 3.31 (dd, 1H, J = 15.7, 9.8 Hz, 4'-Hb), 2.95 (dd, 1H, J = 15.7, 8.1 Hz, 4'Ha), 1.76 (s, 3H, 8'-CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$ : 188.70, 167.26, 157.78, 146.88, 146.67, 143.08, 140.18, 130.03, 113.29, 113.11, 112.86, 112.54, 105.97, 104.83, 100.16, 87.79, 72.16, 66.23, 55.90, 44.58, 31.29, 17.12.

#### Synthesis of R-TA (6)

Compound 5 (102.2 mg), DL-Thioctic acid (55.3 mg), DCC (110.6 mg) and DMAP (16.4 mg) were added into dry CH<sub>2</sub>Cl<sub>2</sub> (20 mL). After 12 h of stirring at room temperature, the mixture was concentrated and purified by silica gel chromatography to give the corresponding compound 6 as a yellow solid. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 600 MHz),  $\delta$  7.83 (d, 1H, *J* = 8.52 Hz, 11-H), 6.95 (s, 1H, 1-H), 6.52 (s, 1H, 10-H), 6.51 (s, 1H, 4-H), 5.27 (t, 1H, *J* = 8.9 Hz, 5'-H), 5.09 and 4.96 (br s, both 1H, 7'-H<sub>2</sub>), 4.94 (m, 1H, 6a-H), 4.65 (dd, 1H, *J* = 12.1 Hz, H-6a), 4.21(d, 1H, *J* = 12.1 Hz, H-6b), 3.84 (d, 1H, 12a-H), 3.77 (s, 3H, OMe), 3.31 (dd, 1H, *J* = 15.7, 9.8 Hz, 4'-Hb), 2.95 (dd, 1H, *J* = 15.7, 8.1 Hz, 4'Ha), 1.78 (s, 3H, 8'-CH3); 3.58-3.63 (m, 1H, S-CH), 3.19-3.23 (m, 1H, S-CH<sub>2</sub>), 3.12-3.16 (m, 1H, S-CH<sub>2</sub>), 2.54 (t, 2H, *J* = 7.38, COCH<sub>2</sub>), 2.47-2.51 (m, 1H, S-CH-CH<sub>2</sub>), 1.91-1.97 (m, 1H, S-CH-CH<sub>2</sub>), 1.71-1.77(m, 4H, CH<sub>2</sub>), 1.27 (s, 1H, CH<sub>2</sub>), 0.85-0.91(m, 1H, CH<sub>2</sub>).

#### Synthesis of FITC-TA (7)



The compound of FITC-TA (7) was synthesized according to the literature.<sup>4</sup>



**Fig. S1**<sup>1</sup> H NMR spectrum of compound 4



**Fig. S2**<sup>13</sup> C NMR spectrum of compound 4



Fig. S3 1H NMR spectrum of compound 5



Fig. S4 <sup>13</sup>C NMR spectrum of compound 5



**Fig. S5**<sup>1</sup> H NMR spectrum of compound 6



**Fig. S6** Zeta potentials of as-prepared Citrate-Au NPs, R-Au NPs, Glc-Au NPs and R-Au NPs-Glc dispersed in aqueous solution.

- 1 W. Fan, Y. Wu, X.K. Li, N. Yao, X. Li, Y.G. Yu and L. Hai, *Eur. J. Med. Chem.*, 2011, **46**, 3651.
- 2 A. Charalambous, T.J. Mangner and M.R. Kilbourn, Nucl. Med. Biol., 1995, 22, 65.
- 3 T. Unai, H.M. Cheng, I. Yamamoto and J.E. Casida, *Agric. Biol. Chem.*, 1972, **8**, 1937.
- 4 X. Li, H. Zhou, L. Yang, G. Du, A. Pai-Panandiker, X. Huang and B. Yan, *Biomaterials*, 2011, **32**, 2540.