Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplemental Information of

"Treatment of dye wastewater nanofiltration concentrates containing high level anions by pH sensitive nano-size Fe(III)@silica microgel" for New Journal of Chemistry

ChunMing Zheng^{a,b*}, DongYing Lian^a, ShuBin Chang^a, Chao Ma^b, MengWei Du^a, XiaoHong

Sun^{c,*}

^aState Key Laboratory of Separation Membranes and Membrane Processes, School of

Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.

^bTianjin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology,

Tianjin Polytechnic University, Tianjin 300387, China

^cKey Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education,

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

^{*} Corresponding authors. Tel./Fax: +86 022 83955661.

E-mail address: zhengchunming@tjpu.edu.cn (C.M. Zheng).

^{*} Corresponding authors. Tel./Fax: +86 022 27406114.

E-mail address: sunxh@tju.edu.cn (X.H. Sun).

1. FT-IR Characterization

The FT-IR spectra of mSiO₂, Fe(III)@mSiO₂, Cys-Fe(III)@mSiO₂ and used Cys-Fe(III)@mSiO₂ after coagulation and Fenton-like degradation are shown in Fig. S1. The broad peak in the range of 3300-3600 cm⁻¹ could be associated with the stretching vibration of -OH. And the peaks at 1637-1641 cm⁻¹ correspond to the bending vibration of water adsorbed, polymerized and crystallized in the coagulant. Furthermore, the peaks at $2361 \sim 2365$ cm⁻¹ are due to carbon dioxide in air. The peaks at 1016-1018 cm⁻¹ and around 958 cm⁻¹ in Fe(III)@mSiO₂ and Cys-Fe(III)@mSiO₂ correspond to symmetrical stretching vibrations of Si-O-Fe respectively. In addition, the strong absorption peaks at 1098-1100 cm⁻¹ correspond to the stretching vibrations of Fe-OH-Fe, which indicates the polymer are formed in the Fe(III)@mSiO₂. But these peaks weakened at Cys-Fe(III)@mSiO₂. Fe-O-Fe and Fe-O are probably formed with the transformation of Fe-OH-Fe and Fe-OH bonds. The peaks at 603-605 and 459-460 cm⁻¹ correspond to the winding vibration of Si-O and Fe-O. Bending vibration of Fe-OH corresponds to the peaks at 667-668 cm⁻¹. The reason could be interpreted as the Fe-O-Fe and Fe-O bonds connect with Si in Cys-Fe(III)@mSiO₂, which forms the Si-O-Fe bonds after the addition of silicon to the solution. Overall, FT-IR analysis probably shows that Cys-Fe(III)@mSiO₂ is not a simple mixture of raw materials. New chemical compounds containing iron and silicon are formed during the synthesis of the samples.

Fig. S1. FT-IR spectra of mSiO₂, Fe(III)@mSiO₂, Cys-Fe(III)@mSiO₂ and used Cys-Fe(III)@mSiO₂ after the Fenton-like degradation and silica coagulation processes for nanofiltration concentrates

2. Effect of H_2O_2 concentration for the degradation of nanofiltration concentrates

The H₂O₂ consumption was related to color and COD removal in the nanofiltration concentrates. Fig. S2 shows the removal of color and COD at different H₂O₂ concentrations of Cys-Fe(III)@mSiO₂. When the mole ratio of Fe(III) ions to H₂O₂ increased from 1:10 to 1:20, the color and COD removal increased from 73.1 % and 52.6 % to 98.4 % and 83.3 %. However, the mole ratio of Fe(III) ions to H₂O₂ varied from 1:30 to 1:40, the color and COD removal decreased from 90.6 % and 69.8 % to 58.6 % and 27.4 %. The reduced efficiency of the color and COD might lie to the hydroperoxyl radical (HO₂•) was generated since the excess amount of H₂O₂ could attack the active hydroxyl radical (•OH). And HO₂• has little acceleration effect in the degradation processes. As well known in the references, the generation rates of Fe(III) with H₂O₂ to hydroxyl radicals is much lower than that of Fe(II) with H₂O₂. With the use of iron and cysteine in Cys-Fe(III)@mSiO₂, sulfur compounds could stimulate the

circulation valences of iron ions, thereby improve the Fenton-like catalytic activity of Fe(III) ions. And the similar enhancement of Fe(III) degradation was observed with the adding assistance of Cys in $Fe(III)/mSiO_2$ for the degradation of nanofiltration concentrates.

Fig. S2 Effect of H₂O₂ concentration for Cys-Fe(III)@mSiO₂ on color removal (A) and COD (B) during the degradation of nanofiltration concentrates (200 mg/L Fe(III),