Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

ELECTRONIC SUPPLEMENTARY INFORMATION

Mechanism for S_NAr reaction of atrazine and endogenous thiols: Experimental and theoretical

study.

Karla Calfumán^a*, Sebastián Gallardo-Fuentes^a, Renato Contreras^a, Ricardo A. Tapia^b and Paola R. Campodónico^c

^aDepartamento de Química, Facultad de Ciencias, Universidad de Chile, casilla 653, Santiago, Chile.

^bDepartamento de Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, casilla 306, Santiago 6094411, Chile.

ccentro de Química Médica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Código Postal 771-0162,

Santiago, Chile.

Table of contents

Page number

Table S1. Kinetic data for the reaction of ATZ with CEE in aqueous solution at pH=6.30	
Table S2. Kinetic data for the reaction of ATZ with CEE in aqueous solution at pH=6.60	S3
Table S3. Kinetic data for the reaction of ATZ with CEE in aqueous solution at pH=6.90	S3
Table S4. Kinetic data for the reaction of ATZ with CYS in aqueous solution at pH=8.07	S4
Table S5. Kinetic data for the reaction of ATZ with CYS in aqueous solution at pH=8.37	S4
Table S6. Kinetic data for the reaction of ATZ with CYS in aqueous solution at pH=8.67	S4
Table S7. Kinetic data for the reaction of ATZ with GSH in aqueous solution at pH=8.45	S5
Table S8. Kinetic data for the reaction of ATZ with GSH in aqueous solution at pH=8.75	
Table S9. Kinetic data for the reaction of ATZ with GSH in aqueous solution at pH=9.05	
Table S10. Kinetic data for the reaction of ATZ with NAC in aqueous solution at pH=9.22	S6
Table S11. Kinetic data for the reaction of ATZ with NAC in aqueous solution at pH=9.52	S6
Table S12. Kinetic data for the reaction of ATZ with NAC in aqueous solution at pH=9.82	S6
Table S13. Cartesian coordinates of TS-1a	S7
Table S14. Cartesian coordinates of TS-1b	S8
Table S15. Cartesian coordinates of TS-1c	
Figure S1. MS of ATZ and its corresponding fragmentation pattern	S10
Figure S2. MS of CEE and its corresponding fragmentation pattern	S11
Table S16. Kinetic data for the reaction of ATZ with CEE in aqueous solution at pH=9.06	S12
Table S17. Kinetic data for the reaction of ATZ with CEE in aqueous solution at pH=9.36	S12
Table S18. Kinetic data for the reaction of ATZ with CEE in aqueous solution at pH=9.66	S12
Figure S3: Plot of k_{obs} vs. free CEE concentration in water	S13
Figure S4. Brönsted type plot	S14
Table S19. $\Delta G^{\#}$ values for the reactions between ATZ and biothiol series carried out in aqueo	ous media
	S15

	[CEE] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0035	1.8*10-6
2	0.0040	2.5*10-6
3	0.0050	5.0*10-6
4	0.0060	6.4*10 ⁻⁶
5	0.0071	7.3*10 ⁻⁶
6	0.0080	8.7*10 ⁻⁶
7	0.0090	9.5*10-6

Table S1. Kinetic data for the reaction of ATZ with CEE in aqueous solution at 25°C±0.1°C and pH=6.3

Table S2. Kinetic data for the reaction of ATZ with CEE in aqueous solution at 25°C±0.1°C and pH=6.6

	[CEE] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0035	3.5*10-6
2	0.0045	5.5*10-6
3	0.0051	6.6*10 ⁻⁶
4	0.0060	8.2*10-6
5	0.0070	9.1*10 ⁻⁶
6	0.0081	1.1*10 ⁻⁵
7	0.0090	1.3*10 ⁻⁵

Table S3. Kinetic data for the reaction of ATZ with CEE in aqueous solution at 25°C±0.1°C and pH=6.9

	[CEE] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0035	5.8*10 ⁻⁶
2	0.0040	7.1*10 ⁻⁶
3	0.0050	8.9*10 ⁻⁶
4	0.0060	$1.1*10^{-5}$
5	0.0070	$1.5*10^{-5}$
6	0.0080	$1.7*10^{-5}$
7	0.0090	$1.8*10^{-5}$

	[CYS] _F	$k_{ m obs}$ / s ⁻¹
1	0.0035	2.1*10-6
2	0.0040	4.1*10 ⁻⁶
3	0.0050	5.7*10-6
4	0.0060	8.3*10-6
5	0.0071	1.3*10 ⁻⁵
6	0.0080	1.6*10-5
7	0.0090	1.8*10 ⁻⁵

Table S4. Kinetic data for the reaction of ATZ with CYS in aqueous solution at 25°C±0.1°C and pH=8.07

Table S5. Kinetic data for the reaction of ATZ with CYS in aqueous solution at 25°C±0.1°C and pH=8.37

	[CYS] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0035	2.5*10-6
2	0.0045	4.3*10 ⁻⁶
3	0.0051	4.8*10-6
4	0.0060	$5.5*10^{-6}$
5	0.0070	7.0*10 ⁻⁵
6	0.0081	8.2*10 ⁻⁵
7	0.0090	9.4*10 ⁻⁵

Table S6. Kinetic data for the reaction of ATZ with CYS in aqueous solution at 25°C±0.1°C and pH=8.67

	[CYS] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0035	6.7*10 ⁻⁶
2	0.0040	8.1*10 ⁻⁶
3	0.0050	9.0*10 ⁻⁶
4	0.0060	1.0*10 ⁻⁵
5	0.0070	1.2*10 ⁻⁵
6	0.0080	1.3*10 ⁻⁵
7	0.0090	1.5*10-5

	[GSH] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0034	5.2*10-6
2	0.0040	7.3*10-6
3	0.0051	9.1*10 ⁻⁶
4	0.0061	1.2*10 ⁻⁵
5	0.0071	1.5*10-5
6	0.0080	1.9*10 ⁻⁵
7	0.0090	2.2*10-5

Table S7. Kinetic data for the reaction of ATZ with GSH in aqueous solution at 25°C±0.1°C and pH=8.45

Table S8. Kinetic data for the reaction of ATZ with GSH in aqueous solution at 25°C±0.1°C and pH= 8.75

	[GSH] _F	$k_{ m obs}$ / s ⁻¹
1	0.0036	1.8*10-6
2	0.0040	3.5*10-6
3	0.0050	5.2*10-6
4	0.0061	8.0*10-6
5	0.0070	1.0*10 ⁻⁵
6	0.0081	1.4*10 ⁻⁵
7	0.0090	1.8*10 ⁻⁵

Table S9. Kinetic data for the reaction of ATZ with GSH in aqueous solution at 25°C±0.1°C and pH=9.05

	[GSH] _F	$k_{ m obs}$ / s ⁻¹
1	0.0036	1.7*10 ⁻⁶
2	0.0040	4.4*10-6
3	0.0050	6.5*10-6
4	0.0061	$1.0*10^{-5}$
5	0.0070	$1.2^{*10^{-5}}$
6	0.0080	$1.8*10^{-5}$
7	0.0090	2.0*10-5

	[NAC] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0036	6.0*10 ⁻⁶
2	0.0043	6.1*10 ⁻⁶
3	0.0049	7.7*10-6
4	0.0060	8.8*10-6
5	0.0072	9.7*10 ⁻⁶
6	0.0085	1.1*10 ⁻⁵
7	0.0092	1.2*10 ⁻⁵

Table S10. Kinetic data for the reaction of ATZ with NAC in aqueous solution at 25°C±0.1°C and pH=9.22

Table S11. Kinetic data for the reaction of ATZ with NAC in aqueous solution at 25°C±0.1°C and pH= 9.52

	[NAC] _F	$k_{ m obs}$ / s ⁻¹
1	0.0036	5.0*10-6
2	0.0041	7.8*10 ⁻⁶
3	0.0051	8.9*10 ⁻⁶
4	0.0060	1.2*10 ⁻⁵
5	0.0071	1.3*10 ⁻⁵
6	0.0081	$1.5*10^{-5}$
7	0.0092	1.9*10 ⁻⁵

Table S12. Kinetic data for the reaction of ATZ with NAC in aqueous solution at 25°C±0.1°C and pH=9.82

	[NAC] _F	$k_{ m obs}$ / s ⁻¹
1	0.0036	9.2*10-6
2	0.0043	1.4*10 ⁻⁵
3	0.0051	1.5*10-5
4	0.0060	1.7*10 ⁻⁵
5	0.0065	2.0*10-5
6	0.0070	2.5*10-5
7	0.0080	2.9*10-5
8	0.0090	3.2*10-5

 Table S13: Cartesian coordinates TS-1a

С	0.31176300	0.37253900	-0.25890300
С	0.10323800	0.53461800	1.99195200
С	2.11939200	0.10529700	1.07942100
Ν	1.62189500	0.07368300	-0.16374900
Ν	1.40729000	0.36330700	2.20165200
Ν	-0.49843700	0.62644800	0.78345800
С	-2.18113000	2.30215700	3.31702500
Н	-2.30305000	3.19356500	3.93562900
S	-0.37829200	2.20450000	3.01331700
Н	-0.02186500	1.77500800	4.24101800
Ν	3.43746600	-0.10006900	1.25604500
Ν	-0.19542500	0.44765300	-1.50233500
Н	3.74662400	-0.17446800	2.21613400
С	-1.59782900	0.65045000	-1.83011700
Н	-1.62769800	0.99308500	-2.86626700
Н	-1.98623600	1.47290700	-1.22367400
С	4.36774400	-0.54061400	0.21809400
Н	4.09996500	-0.00892000	-0.69802600
С	4.26003500	-2.04535700	-0.02831900
Н	4.55536800	-2.60084400	0.86892900
Н	3.23616500	-2.32793700	-0.28911100
Н	4.91949900	-2.34293800	-0.84967600
С	-2.45280500	-0.60184500	-1.67171300
Н	-2.39491700	-0.99726300	-0.65289700
Н	-3.49968500	-0.37036500	-1.89117600
Н	-2.12074300	-1.38400800	-2.36094700
С	5.77967400	-0.13998800	0.62847000
Н	6.06211500	-0.62904000	1.56814700
Н	6.49311700	-0.44971300	-0.13993900
Н	5.86338100	0.94254100	0.76170000
С	-3.00461200	2.47865700	2.04983500
Н	-2.51463300	3.16123500	1.34837700
Н	-2.48987200	1.42399100	3.88770100
Н	0.43228500	0.16968600	-2.24314900
Cl	-0.94742800	-0.81405200	3.10682800
Ν	-3.17977900	1.18797600	1.33791600
Н	-3.59009400	0.47971100	1.95121100
Н	-3.82566700	1.31671900	0.55491000
С	-4.39500500	3.10006700	2.36798700
0	-5.38542400	2.56353100	1.81530400
0	-4.38580000	4.10449700	3.11715800
Н	-2.24887900	0.84714500	0.97589900

Energy=-1768.5160891 a.u NIMAG=1 ; v= 334 icm⁻¹

Table S14: Cartesian coordinates TS-1b

С	-0.05651600	0.11345500	0.01479200
С	-0.04444000	0.06979300	2.24601300
С	1.90273700	0.03787900	1.14215000
Ν	1.28391900	0.24144000	-0.03531200
Ν	1.29035700	-0.14317300	2.31818300
Ν	-0.77977600	-0.08179800	1.11850500
С	-1.74079900	2.76892800	1.83525200
Н	-2.46915500	3.18720600	2.53230200
S	-0.17930300	2.36787700	2.67500000
Ν	3.26557500	0.05142900	1.16089700
Ν	-0.70750600	0.25292200	-1.17698200
Н	3.65293000	-0.24756700	2.04833200
С	-2.11681200	-0.07701300	-1.35116800
Н	-2.45377300	0.43371800	-2.25651300
Н	-2.66971800	0.34977100	-0.51171200
С	4.08409400	-0.29896600	-0.00228100
Н	3.66556500	0.23090900	-0.85978100
С	4.04500500	-1.80258000	-0.27450400
Н	4.49068200	-2.35150500	0.56315200
Н	3.01588900	-2.15146900	-0.40572000
Н	4.60697300	-2.04566500	-1.18206200
С	-2.37990300	-1.57427200	-1.46869300
Н	-2.05339500	-2.10368100	-0.56884100
Н	-3.44974500	-1.75807500	-1.60899700
Н	-1.84691000	-1.99370700	-2.32818900
С	5.50699900	0.19109400	0.23569700
Н	5.93583600	-0.28434500	1.12596400
Н	6.14087900	-0.06217300	-0.61904800
Н	5.53520200	1.27544300	0.37772400
С	-1.57117000	3.76591500	0.67865400
Н	-1.26120400	4.73962300	1.06202200
Н	-2.14723200	1.83042400	1.43315600
Н	-0.11569500	0.11481600	-1.98606100
Cl	-0.91218900	-0.56240400	3.69180600
Ν	-0.48540200	3.28552200	-0.21431000
Н	0.28981600	2.96030300	0.38788700
Н	-0.81542300	2.49507000	-0.78577900
С	-2.87774000	3.91487000	-0.11661900
0	-2.92935300	3.38267500	-1.25653600
0	-3.80328900	4.53962700	0.46408800
Н	-0.15519000	4.01729800	-0.84432000

Energy= -1768.5341418 a.u NIMAG= 1 ; v= 290 icm⁻¹

 Table S15: Cartesian coordinates TS-1c

С	-0.35309602	-0.72301432	-0.20898212
С	-0.35309602	-0.72301432	2.02603988
С	1.59952098	-0.72301432	0.93171088
Ν	0.98830198	-0.57119132	-0.25385712
Ν	0.98566598	-0.89419632	2.10978688
Ν	-1.07930202	-0.89240432	0.90197488
С	-2.09796202	1.98627368	1.59017188
Н	-2.85432502	2.36955068	2.28110188
S	-0.55438802	1.61219668	2.47005188
Ν	2.96356898	-0.66603032	0.96323688
Ν	-0.99276402	-0.70825932	-1.39988612
Н	3.34648998	-0.93619232	1.86188388
С	-2.43291102	-0.78937332	-1.57344412
Н	-2.67809102	-0.23301032	-2.48200212
Н	-2.90779902	-0.27184532	-0.73618712
С	3.80119098	-1.02845932	-0.18296912
Н	3.37302898	-0.53919332	-1.05995612
С	3.81177698	-2.54002032	-0.41115612
Н	4.25402998	-3.05241532	0.45121688
Н	2.79687798	-2.92323732	-0.55551712
Н	4.40045798	-2.79009432	-1.29956312
С	-2.95825102	-2.21694732	-1.67991912
Н	-2.73829102	-2.78605332	-0.77172912
Н	-4.04351502	-2.20792532	-1.82375712
Н	-2.50602902	-2.73645232	-2.53077712
С	5.20779798	-0.48803532	0.04317988
Н	5.64484998	-0.91387532	0.95431988
Н	5.85226398	-0.75681932	-0.79858812
Н	5.20195698	0.60178668	0.13860288
С	-1.90415902	2.99911468	0.43199388
Н	-1.60844902	3.95987968	0.86306688
Н	-2.46406402	1.04137268	1.16321688
Н	-0.40740902	-0.65859632	-2.22025912
Cl	-1.21646802	-1.36357732	3.47372088
Ν	-0.91444202	2.60220268	-0.55934512
Н	-0.10336702	2.28513368	-0.02703312
Н	-1.25736802	1.76986968	-1.03722212
С	-3.24132302	3.19762368	-0.23860312
0	-3.59115702	2.66171368	-1.27738712
0	-4.05304502	4.00355968	0.45740088
Н	-4.91670802	4.04296968	0.01546288

Energy= -1768.9717124a.u NIMAG= 1 ; v= 240 icm⁻¹

Figure S1: MS of ATZ (A) and its corresponding fragmentation pattern (B).

Figure S2: MS of CEE (A) and its corresponding fragmentation pattern (B).

	[CEE] _F	$k_{ m obs}$ / s ⁻¹
1	0.0036	1.2*10-6
2	0.0041	2.3*10-6
3	0.0050	4.7*10 ⁻⁶
4	0.0060	7.2*10-6
5	0.0070	1.0*10-5
6	0.0081	1.3*10 ⁻⁵
7	0.0090	1.5*10 ⁻⁵

Table S16. Kinetic data for the reaction of ATZ with CEE in aqueous solution at 25°C±0.1°C and pH= 9.06

Table S17. Kinetic data for the reaction of ATZ with CEE in aqueous solution at 25°C±0.1°C and pH=9.36

	[CEE] _F	$k_{\rm obs}$ / s ⁻¹
1	0.0035	1.3*10-6
2	0.0040	4.2*10-6
3	0.0050	7.5*10-6
4	0.0061	1.0*10-5
5	0.0071	1.3*10 ⁻⁵
6	0.0080	1.6*10 ⁻⁵
7	0.0091	1.8*10 ⁻⁵

Table S18. Kinetic data for the reaction of ATZ with CEE in aqueous solution at 25°C±0.1°C and pH= 9.66

	[CEE] _F	$k_{ m obs}$ / s ⁻¹
1	0.0035	3.6*10-7
2	0.0040	$5.4*10^{-6}$
3	0.0050	8.2*10-6
4	0.0060	1.3*10 ⁻⁵
5	0.0071	1.6*10 ⁻⁵
6	0.0080	2.1*10 ⁻⁵
7	0.0091	2.6*10-5

Figure S3: Plot of *k*_{obs} *vs.* free CEE concentration in water.

Figure S4: Brönsted type plots (CYS*** value adjusted according to its pKa).

Biothiols	рН	^a ∆G [#] Kcal/mol
CYSTEINE ETHYL ESTER		
pKa - 0.3	6.30	16.3
рКа	6.60	15.9
pKa + 0.3	6.90	15.0
CYSTEINE		
рКа- 0.3	8.07	14.4
рКа	8.37	16.7
pKa + 0.3	8.67	16.3
GLUTHATIONE		
pKa - 0.3	8.45	14.4
рКа	8.75	14.5
pKa + 0.3	9.05	14.2
N-ACETYLCYSTEINE		
pKa - 0.3	9.22	15.9
рКа	9.52	15.1
pKa +0.3	9.82	13.5

Table S19: Δ**G**[#] values for the reactions between ATZ and biothiol series carried out in aqueous media.

^aΔG[#] values were determined considered the transition-state theory (1M and 298,15K).