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5-level model rate equations S1-S7 follow
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where δ0, δ1 and δ2 are the ground, singlet and triplet excited state absorption cross section 

respectively,  is Planck’s constant,  is the frequency of light, the Ni values represent the ℏ

populations in the different states; β is the two photon absorption (TPA) cross-section, the i 

values are the lifetimes of the excited states; and isc is the lifetime of intersystem crossing.  

The intensity transmitted through the sample is represented as I.

The intensity transmitted through the sample (I) is given by equations 
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where nr is the refractive index (nr = 1.479 in DMSO), c is the speed of light in vacuum, I00 is 

the peak intensity at the focus of Guassian beam; τp is the input pulse width; 𝛚0 is beam waist 

at focus, z0 is Rayleigh range and r is the radius of the aperture.  dI/dz in eq.S5 describes the 

change of photon flux with propagation of laser light through the sample with z as the 

position of the sample in the beam profile.                 

Supporting Figures
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Fig. S1 NMR spectrum of complex 6 in DMSO-d6 (insert, expanded section of the spectra)
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           Fig. S2: MALDI-TOF mass spectra of complex 6 (insert, simulated isotropic mass distribution)
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Fig. S3: Absorption spectra of 3 (5.0 μM) in aqeous solution containing different ratio of AuNPs or AgNPs 
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Fig. S4:  Absorption spectra of (A) 6 (i), OA-AgNPs (ii) and 6SA-AgNPs (iii), (B), 6 (i) GSH-AuNPs (ii) and 

6CB-AuNPs (iii) in  DMSO.
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Fig. S5: Representative EDX spectra of glutathione functionalized nanoparticles alone and when 

conjugated to complex 6
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Fig. S6: High resolution XPS spectrum of N 1s for  6SA-AgNPs and 6CB-AgNPs
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Fig S7: Fluorescence lifetime decay curve of complex 6 in DMSO
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 Fig. S8: Triplet decay curve of 6CB-AuNPs in DMSO
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 Fig. S9:  Transmission vs. input fluence (Io) curve for complex 6  and its nanoconjugates
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Table S1.  TD-DFT spectra of the B3LYP optimized geometries for 6 with a four-fold 
symmetric set of attachments calculated with the CAM-B3LYP functional and 6-31G(d) 
basis sets.
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Banda #b Calcc Expd Wave Functione =

1 16.0 626 (0.49) 93% 1a1u → 1eg*; …
Q

2 16.1 620 (0.72)
14.7 680

93% 1a1u → 1eg*; …
12 32.4 309 (0.70) 41% 1a2u → 1eg*;  11% H−3Ph → 1eg*; …

B1
13 32.6 307 (1.13)

28.7 348
45% 1a2u → 1eg*;  16% H−4Ph → 1eg*; 11% 1b2u → 1eg*; …

18 34.4 291 (0.38) --- --- 42% 2a2u → 1eg*; …
B2

19 34.4 290 (0.43) --- --- 44% 2a2u → 1eg*; …
a − Band assignment described in the text. b − The number of the state assigned in terms of ascending energy within the 
TD-DFT calculation. c − Calculated band energies (103.cm−1), wavelengths (nm) and oscillator strengths in parentheses (f). d 
− Observed energies (103.cm−1) and wavelengths (nm) in Figure 1. e − The wave functions based on the eigenvectors 
predicted by TD-DFT with one-electron transitions associated with Gouterman’s 4-orbital model highlighted in bold. The 
symmetry notations in each case used refer to the D4h symmetry of the parent monomeric Pc(−2) ligand to facilitate a 
comparison. Only one-electron transitions that provide a greater than 10% contribution are included and a Ph superscript 
is used to denote MOs that are localized primarily on the phenoxy substituents.


