Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information

Conformational Behaviour, Photochemistry and Flash Vacuum Pyrolysis of a 2-(1*H*-Tetrazol-1-yl)thiophene

Maria I. L. Soares,^{a,*} Cláudio M. Nunes,^a Clara S. B. Gomes,^b

Teresa M. V. D. Pinho e Melo,^a Rui Fausto^a

^a CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

^b Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

Table of Contents

Figure S1: Optimized structure of the theoretically predicted conformer 15-III calculated at the B3LYP/6-311++ $G(d,p)$ level.	S2
Table S1: Experimental IR spectrum, B3LYP/6-311++G(d,p) calculatedvibrational frequencies and absolute IR intensities for 2-(1 <i>H</i> -tetrazol-1-yl)thiophene 15	S3
Figure S2: Experimental UV-Vis spectrum of 2-(1 <i>H</i> -tetrazol-1-yl)thiophene 15	S4
Figure S3: IR spectra of thiophen-2-ylcarbodiimide 17 conformers simulated at the B3LYP/6-311++ $G(d,p)$ level	S5
Figure S4: Experimental difference IR spectrum obtained from the spectrum after irradiation of matrix-isolated tetrazole 15 " <i>minus</i> " the spectrum of the sample before irradiation and IR spectra of carbodiimide conformers simulated at the B3LYP/6-311++G(d,p) level	S6
Figure S5: ¹ H NMR spectrum of compound 18	S 7
Figure S6: ¹³ C NMR spectrum of compound 18	S 7
Figure S7: ¹ H NMR spectrum of compound 19	S 8
Figure S8: ¹³ C NMR spectrum of compound 19	S 8
Table S2: Crystallographic data for compounds 15 and 19	S9
Cartesian coordinates, energies and IR spectra from B3LYP calculations for 15 and 17	S10

Figure S1: Optimized structure of the theoretically predicted conformer **15-III** calculated at the B3LYP/6-311++G(d,p) level with relative zero-point-corrected energy [kJ mol⁻¹]. Calculations were carried out in order to find higher energy isomers of compound **15** having *trans* orientation concerning the O=C–O–C(H3) dihedral (~180°). Theoretical calculations allowed us to find a single conformation corresponding to a minimum. As mentioned in the manuscript, its relative energy is above 40 kJ mol⁻¹ and therefore not significant from an experimental point of view.

	Ar matrix ^[a]				Calculated [b]	
	15			15-I		15-II
\tilde{v}	Ι		$\widetilde{\mathcal{V}}$	A^{th}	$\widetilde{\mathcal{V}}$	A^{th}
704	W	{	704	8.7	708	12.5
712	m	{	708	15.8	712	13.6
963	br	{	950	15.6	950	10.9
983	W				976	6.2
995	W		984	9.6		
995	W				986	13.3
1016	m		1003	25.2		
1076	S	{	1067	17.2	1068	9.4
1144	br	{	1136	21.4	1136	35.6
1204	m		1193	63.6		
1186	m				1188	13.1
1263	VS		1254	107		
1270	S				1261	98.6
1295	m		1321	23.6		
1300	m				1314	8.7
1405	W				1401	29.6
1408	m		1400	18.2		
1444	m		1443	9.3		
1446	m				1444	14.1
1482	br	{	1478	16.5	1476	14.2
1554	m		1546	36.5		
1560	m				1554	15.2
1729	VS		1722	84.2		
1738	S				1732	114.0
2966	br	{	2994	9.9	2996	8.8

Table S1: Experimental IR spectrum (Ar matrix, 16 K), B3LYP/6-311++G(d,p) calculated vibrational frequencies (\tilde{v} [cm⁻¹], absolute IR intensities (A^{th} [km mol⁻¹] for 2-(1*H*-tetrazol-1-yl)thiophene **15**.

[a] Only bands in the 3300-600 cm⁻¹ region having calculated intensities above 5 km mol⁻¹ (for both conformers) are included. Experimental intensities are presented in qualitative terms: vs = very strong, s = strong, m = medium, w = weak and br = broad; [b] Scaled B3LYP/6-311++G(d,p) frequencies.

Figure S2: Experimental UV-Vis spectrum of 2-(1*H*-tetrazol-1-yl)thiophene **15** in acetonitrile solution.

Figure S3: IR spectra of thiophen-2-ylcarbodiimide 17 conformers simulated at the B3LYP/6-311++G(d,p) level: (a) conformer 17-I; (b) conformer 17-II; (c) conformer 17-III; (d) conformer 17-IV.

Figure S4: (a) B3LYP/6-311++G(d,p) simulated IR spectra for conformers **17-III** and **17-IV**; (b) B3LYP/6-311++G(d,p) simulated IR spectra for conformers **17-I** and **17-II**. The calculated spectra was simulated using Lorentzian functions centered at the calculated frequency scaled by 0.95, above 3400 cm⁻¹, and 0.98, below 3400 cm⁻¹, and with full-width-at-half-maximum (fwhm) equal to 2 cm⁻¹; (c) Experimental difference IR obtained from the spectrum after irradiation of matrix-isolated tetrazole **15** at 245 nm (~22m min, ~5 mW) "*minus*" the spectrum of the sample before irradiation. The negative bands correspond to tetrazole **15** and positive bands are due to the photoproduct.

Figure S5: ¹H NMR spectrum of compound 18.

Figure S6: ¹³C NMR spectrum of compound 18.

Figure S7: ¹H NMR spectrum of compound 19.

Figure S8: ¹³C NMR spectrum of compound 19.

	15	19
Formula	C7 H6 N4 O2 S	C7 H6 N2 O2 S
M	210.22	182.20
λ (Å)	0.71073	0.71073
$T(\mathbf{K})$	293(2)	150(2)
crystal system	Monoclinic	Monoclinic
space group	$P 2_1/c$	$P 2_{1}/c$
a (Å)	3.9245(5)	8.454(4)
$b(\mathbf{A})$	18.054(2)	12.125(6)
c (Å)	12.6455(15)	7.206(3)
α (°)	90	90
$\beta(^{\circ})$	98.936(8)	91.66(2)
$\gamma(^{\circ})$	90	90
$V(Å^3)$	885.09(19)	738.4(6)
Z	4	4
ρ_{calc} (g.cm ⁻³)	1.578	1.639
$\mu (\text{mm}^{-1})$	0.343	0.390
Crystal size	0.20×0.20×0.30	0.20×0.10×0.08
Crystal colour	Colourless	Colourless
Crystal description	Prism	Plate
θ_{max} (°)	25.681	25.772
total data	5591	2802
unique data	1710	1394
Rint	0.0404	0.0492
$R[I > 2\sigma(I)]$	0.0347	0.0530
R_w	0.0909	0.1132
Goodness of fit	1.026	1.017
$ ho_{min}$	-0.230	-0.341
ρ_{max}	0.204	0.420

 Table S2: Crystallographic data for compounds 15 and 19.

B3LYP/6-311++G(d,p) calculations

Tetrazole 15:

Conformer 15-I

E	nergy = -1038.130)2489 Ha, ZPE =	0.1359625 Ha
С	-0.492805000	0.594609000	-0.052650000
С	0.890053000	0.555676000	-0.072554000
С	1.449952000	1.874752000	-0.103075000
С	0.511616000	2.857746000	-0.104560000
S	-1.098917000	2.222961000	-0.064286000
Η	2.514680000	2.052861000	-0.115211000
Η	0.660822000	3.926478000	-0.110873000
Ν	-1.441676000	-0.438610000	-0.001239000
С	-1.521394000	-1.660963000	-0.589570000
Η	-0.728582000	-2.103359000	-1.163099000
Ν	-2.628194000	-0.231558000	0.657817000
Ν	-3.338993000	-1.277348000	0.466413000
Ν	-2.683950000	-2.191907000	-0.305103000
С	1.716612000	-0.670287000	-0.032427000
0	1.311648000	-1.802360000	-0.186118000
0	3.010947000	-0.378750000	0.198750000
С	3.910861000	-1.504254000	0.252650000
Η	3.904806000	-2.040542000	-0.696881000
Η	4.891670000	-1.077547000	0.448118000
Н	3.618841000	-2.184105000	1.053375000

$\tilde{\nu}$	A	$\tilde{\nu}$	A
3321	14.4	960	8.9
3251	0.8	915	1.8
3233	1.6	901	9.1
3163	11.7	869	18.2
3131	14.7	836	16.6
3055	31.5	799	2.4
1758	264.9	774	4.7
1578	114.8	723	48.3
1507	53.5	719	24.5
1497	14.1	681	0.2
1483	11.1	656	9.9
1482	8.3	602	2.2
1473	30.0	529	4.7
1429	58.6	518	3.1
1386	15.3	411	1.6
1348	74.1	364	12.6
1279	346.0	334	6.0
1222	14.0	322	0.5
1217	199.9	287	5.2
1195	8.7	207	6.0
1171	1.0	162	5.0
1159	71.1	147	0.3
1117	10.5	134	0.1
1089	54.3	111	0.4
1023	80.8	98	1.7
1005	30.0	45	3.9

34

970

48.9

Conformer 15-II

Energy = - 1038.1289100 Ha, ZPE = 0.1358529 Ha

С	0.041841000	-0.831294000	0.043052000
С	1.250906000	-0.165013000	0.029848000
С	2.352190000	-1.077176000	0.042152000
С	1.969280000	-2.382652000	0.054435000
S	0.247333000	-2.555769000	0.060927000
Н	3.377975000	-0.738220000	0.025358000
Н	2.592698000	-3.263475000	0.044947000
Ν	-1.266543000	-0.317542000	0.046512000
С	-1.899746000	0.485303000	0.932711000
Н	-1.431953000	0.903316000	1.806679000
Ν	-2.175443000	-0.650135000	-0.922542000
Ν	-3.268262000	-0.059729000	-0.609096000
Ν	-3.136800000	0.660358000	0.543694000
С	1.507656000	1.296069000	-0.049188000
0	2.616316000	1.766554000	-0.148788000
0	0.383406000	2.035123000	-0.006504000
С	0.557439000	3.462462000	-0.137995000
Н	1.024474000	3.697279000	-1.094633000
Н	-0.445549000	3.879134000	-0.087224000
Н	1.179183000	3.844000000	0.672310000

A	$\widetilde{ u}$	A	$\widetilde{\nu}$	A
8.9	3296	3.0	957	3.9
1.8	3248	1.3	928	3.5
9.1	3227	2.9	922	16.1
18.2	3165	7.1	868	11.4
16.6	3133	13.2	840	14.0
2.4	3057	27.6	803	0.8
4.7	1768	370.5	774	10.4
48.3	1586	48.1	726	39.0
24.5	1506	46.5	723	35.6
0.2	1497	6.8	688	4.1
9.9	1484	13.2	659	3.8
2.2	1484	7.1	606	1.0
4.7	1474	44.7	528	3.5
3.1	1430	97.8	510	1.0
1.6	1402	12.0	402	1.1
12.6	1340	27.2	370	11.0
6.0	1287	312.1	349	7.1
0.5	1220	13.1	318	3.3
5.2	1213	41.3	281	1.9
6.0	1187	17.4	203	5.2
5.0	1171	1.3	155	1.6
0.3	1160	111.7	138	0.2
0.1	1111	15.8	126	1.1
0.4	1091	30.9	100	0.6
1.7	1006	45.1	89	0.3
3.9	996	19.1	36	3.5
2.2	971	34.9	27	7.3

Conformer 15-III

Energy = -1038.1134503 Ha, ZPE = 0.135447 Ha

С	-0.234689000	0.624626000	-0.127802000
С	1.039020000	0.138099000	-0.317290000
С	1.993911000	1.198669000	-0.426967000
С	1.435398000	2.435680000	-0.308576000
S	-0.273126000	2.361724000	-0.053572000
Η	3.047326000	1.036888000	-0.608765000
Η	1.926739000	3.395661000	-0.349787000
Ν	-1.436975000	-0.083508000	0.023065000
С	-1.973528000	-1.123168000	-0.668942000
Η	-1.462005000	-1.636068000	-1.465098000
Ν	-2.361452000	0.303338000	0.958585000
Ν	-3.367402000	-0.476291000	0.816325000
Ν	-3.162689000	-1.380228000	-0.183525000
С	1.372979000	-1.310781000	-0.483552000
0	0.817420000	-2.012474000	-1.291923000
0	2.357147000	-1.830276000	0.276619000
С	2.841286000	-1.175950000	1.465953000
Н	3.652508000	-0.488058000	1.223524000
Н	2.041694000	-0.644319000	1.982665000
Н	3.220577000	-1.975912000	2.098946000

Carbodiimide 17:

895

39.3

56

0.4

Conformer 17-I

Energy = -928.6456244 Ha, ZPE = 0.1232524 Ha

_	5	-0.0.00		, בו ב	0.1202	02.114
С	1.09098	38000	0.30	01438000	0.10	5981000
С	0.06868	3000	-0.63	31017000	-0.0	14813000
С	0.57229	93000	-1.96	55709000	-0.10	56069000
С	1.92843	39000	-2.03	35884000	-0.15	53242000
S	2.65488	5000	-0.46	59315000	0.05	5259000
Н	-0.07463	31000	-2.8	23343000	-0.2	78410000
Н	2.55625	52000	-2.90	06990000	-0.2	57028000
Ν	1.06852	22000	1.65	55183000	0.31	9642000
С	0.28135	52000	2.52	27094000	-0.02	24404000
Ν	-0.2918	14000	3.52	23723000	-0.4	12279000
Н	-1.1899	58000	3.7	86425000	-0.02	25987000
С	-1.35563	31000	-0.2	81427000	0.00	51057000
0	-1.80220	65000	0.8	38905000	0.21	6095000
0	-2.14778	88000	-1.3	70942000	-0.0	53251000
С	-3.56442	29000	-1.12	29470000	0.0	14181000
Н	-4.02908	82000	-2.1	06313000	-0.1	00195000
Н	-3.87624	49000	-0.4	59349000	-0.7	88090000
Н	-3.83119	92000	-0.6	87583000	0.9	75136000
	$\tilde{\nu}$	A		$\widetilde{\nu}$		A
	3602	12	95	8	71	414.6
	3250	12	0.4	8	32	10.9
	3227		15	7	96	6.4
	3156	1	4.0	, 7	77	30.1
	3123	1	8.5	, 7	'31	11.4
	3051	3	7.1	, 7	/04	65.9
	2235	151	6.3	6	31	8.0
	1737	21	0.5	5	91	2.5
	1566	12	4.9	5	59	14.6
	1527	4	5.3	5	27	53.5
	1498	1	0.2	5	04	10.6
	1483	-	9.7	4	32	23.0
	1472	4	5.8	4	27	34.2
	1418	16	0.8	3	74	10.0
	1385		3.5	3	33	11.3
	1277	33	3.8	2	.92	4.1
	1215	12	1.6	2	76	18.7
	1181	5	0.7	1	89	0.9
	1171	-	0.8	1	66	1.4
	1130	7	7.5	1	35	0.4
	1087	6	8.7	1	09	2.1
	1023	9	4.0	1	00	3.8
	907		1.0		74	4.0

Conformer 17-II

En	nergy = -9	28.6408	148 H	a, $ZPE = 0$.1228882	2 Ha
С	0.8166	36000	0.11	7024000	-0.0496	582000
С	-0.5271	04000	0.44	41391000	0.0077	704000
С	-0.7409	93000	1.8	56887000	0.0686	516000
С	0.4091	33000	2.58	30458000	0.0580	19000
S	1.8146	24000	1.56	1812000	-0.0318	17000
Н	-1.7263	377000	2.2	95679000	0.1186	591000
Н	0.5289	25000	3.6	52231000	0.0929	10000
Ν	1.3521	64000	-1.1	37449000	-0.150′	775000
С	2.4603	77000	-1.6	15710000	-0.0002	291000
Ν	3.5472	62000	-2.1	67948000	-0.027	986000
Η	3.9291	76000	-2.6	33893000	0.7853	382000
С	-1.6108	68000	-0.5	64606000	0.0207	742000
0	-1.4741	49000	-1.7	63153000	0.0802	250000
0	-2.8272	274000	0.0	37469000	-0.0382	263000
С	-3.9597	61000	-0.8	48237000	-0.023	507000
Η	-4.8334	51000	-0.2	02431000	-0.080	681000
Η	-3.9750	005000	-1.4	34728000	0.8964	405000
Η	-3.9263	379000	-1.5	25835000	-0.877	800000
î	ž	A		$\widetilde{\nu}$		A
	3595	12	3.4	85	50	483.3
	3249		0.1	82	25	56.5
	3230		1.4	80)2	7.0
	3153	1	5.8	75	59	13.2
	3120	1	9.3	70)8	40.9
	3049	4	0.8	69	99	21.8
	2250	165	1.4	64	15	14.1
	1773	27	2.0	59	97	13.5
	1592	16	5.1	55	52	4.5
	1520	1	5.7	54	16	38.0
	1499	1	1.5	50)2	8.9
	1482		9.2	44	16	6.4
	1470	2	9.5	40)8	78.5
	1418	12	6.1	36	57	5.6
	1393	1	5.3	33	38	19.1
	1265	33	1.6	27	72	3.5
	1210	13	3.1	26	53	17.0
	1172	11	6.3	18	36	7.3
	1171		0.8	15	51	2.6
	1129	8	5.1	13	31	0.2
	1084	3	8.7	10)1	1.4
	1020	6	3.9	7	79	0.3
	911		1.8	3	39	8.1

86.5

35

887

3.4

Conformer 17-III

En	ergy = -928	.64233	57 Ha, ZPE =	0.1229846 H	ła
С	0.814572	000	0.622060000	-0.046437	/000
С	0.504764	000 ·	-0.730500000	0.021783	000
С	1.677343	000 ·	1.549073000	0.083456	6000
С	2.837792	000 ·	0.842443000	0.059035	000
S	2.5467400	000	0.864303000	-0.048098	000
Н	1.617622	000	-2.626685000	0.141737	7000
Н	3.849946	000	-1.214082000	0.096887	7000
Ν	0.062613	000	1.762145000	-0.141296	5000
С	-1.082057	000	2.127826000	0.049073	000
Ν	-2.196467	000	2.620747000	0.062959	0000
Η	-2.571971	000	3.057603000	0.894654	000
С	-0.828900	000	-1.361292000	0.014399	0000
0	-1.014931	000	-2.556550000	0.064693	3000
0	-1.829014	000	-0.457966000	-0.06006.	3000
С	-3.167957	000	-0.984923000	-0.100673	3000
Η	-3.814059	000	-0.113927000	-0.18091	8000
Η	-3.382586	000	-1.546891000	0.809293	3000
Η	-3.291585	000	-1.638904000	-0.96458.	3000
$\tilde{\nu}$		Α	$\widetilde{\nu}$	1	4
	3600	109	.3 8	853	346.5
	3249	0	.3 8	838	124.9
	3222	2	.3 8	800	3.4
	3162	7	.3	775	17.8
	3125	17	.5	720	10.8
	3052	33	.1	710	68.3
	2252	1522	.8 0	513	12.4
	1758	425	.5 5	595	8.1
	1578	60	.3 .5	543	21.1
	1524	21	.4 .4	530	2.1
	1498	7	.9 .5	500	22.7
	1485	8	.5 4	142	2.6
	1471	58	.3 3	389	81.5
	1419	113	.4 3	356	6.6
	1393	2	.4 3	323	1.0
	1283	248	.7 3	304	14.1
	1213	38	.0 2	258	31.3
	1172	1	.0	187	5.3
	1169	77	6	164	9.8

1120

1073

994

920

917

35.4

31.5

53.9

35.1

2.2

136

109

103

54

34

0.2

0.1

1.6

9.7

3.7

Conformer 17-IV

Energy = -928.6411317 Ha, ZPE = 0.1229499 Ha

Energy	20.011	101/1	14, 21 1	0.1222	199 114
C -0.	715039000	-0.0	83366000	-0.0	07189000
C 0.4	476989000	-0.7	86486000	0.00)1958000
C 0.2	270053000	-2.2	03317000	0.01	1730000
C -1.0	039102000	-2.5	63980000	0.0	10448000
s -2.0	089162000	-1.1	79334000	-0.00	05802000
Н 1.0	095395000	-2.9	00718000	0.0	19153000
Н -1.4	463732000	-3.5	55906000	0.0	15064000
N -0.	878481000	1.2	77567000	-0.02	25177000
C -1.3	844196000	2.0	17469000	0.01	8006000
N -2.	732627000	2.8	44111000	-0.1	03765000
Н -3.	161950000	3.2	87085000	0.69	98943000
C 1.8	358193000	-0.2	51364000	0.00	01650000
O 2.8	840208000	-0.9	62676000	-0.0	02978000
O 1.9	918949000	1.0	91697000	0.00	08120000
C 3.2	241135000	1.6	58687000	0.00	0801000
Н 3.0	090932000	2.7	36003000	0.00	3631000
Н 3.7	785231000	1.3	48422000	-0.89	92340000
Н 3.7	797016000	1.3	44689000	0.88	35415000
$\widetilde{\nu}$	A		$\widetilde{\nu}$		A
3501	1 1	131	8	53	105 5
3249	1 I R	03	8	33	44.3
3274	5	23	8	04	3.9
3156	, 5	12.2	7	64	17.8
3121	1	19.0	, 7	10	67.8
3049)	38.2	, 7	04	0.9
2244	, 1 15	68 5	6	50	22.3
1743	7 4	59.2	5	96	9.8
1591	1	00.2	5	48	38.6
1519)	19.6	5	34	5.6
1497	7	6.1	5	02	13.7
1482	2	8.9	4	57	1.4
1471	1	57.2	4	08	68.7
1414	4 1	35.5	3	55	14.8
1405	5	15.4	3	46	2.1
1289) 3	61.3	2	80	4.8
1212	2	47.5	2	69	17.7
1169)	85.9	1	80	5.7
1169)	4.5	1	48	3.8
1124	1	30.8	1	34	0.0
1082	2	17.9	1	01	1.4
995	5	45.7		76	0.3
924	1	2.1		43	8.9
915	5	23.4		32	3.1