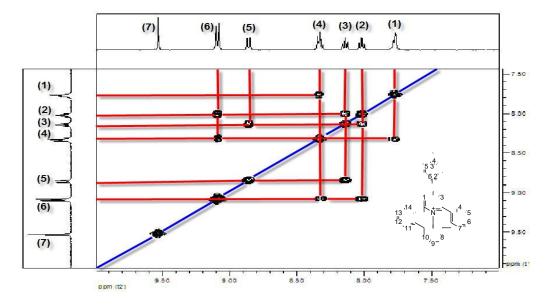
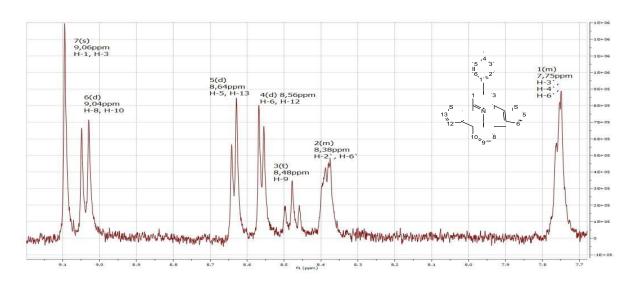

New Journal of Chemistry

Electronic Supplementary Information (ESI):


Aggregation phenomena in photobicyclised pyridinium salts

A. Aracena*a, M. C. Rezende *b, M.V. Encinas *b, C. Vergarab and S. O. Vásqueza.


NMR spectra of studied compounds:

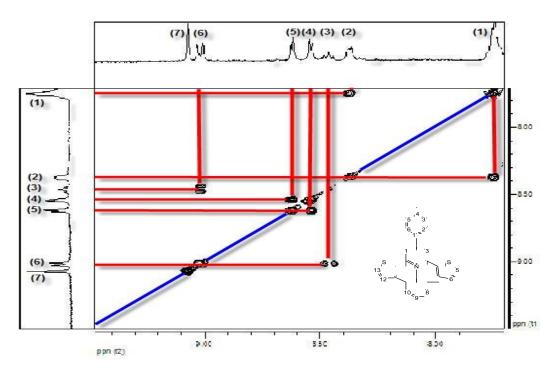

Figure 1 - 1 H NMR spectrum of the 2-phenylbenzo[8,9]quinolizino[4,5,6,7-fed]phenanthridinylium tetrafluoroborate (PQPBF₄) in (CD₃)₂CO.

Figure 2 – 2-D ¹H-¹H COSY plot of the 2-phenylbenzo[8,9]quinolizino[4,5,6,7-fed]phenanthridinylium tetrafluoroborate (PQPBF₄) in (CD₃)₂CO

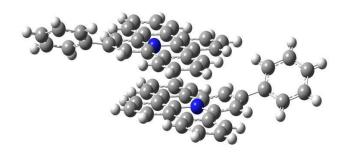


Figure 3 - ¹H NMR spectrum of the 2-phenylbenzo[ij]pyrido[2,1,6-de]dithieno[3,2-b:2',3'-g] quinolizin-13-ium perchlorate (BPDTQClO₄) in (CD₃)₂CO

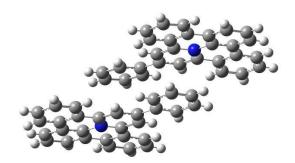
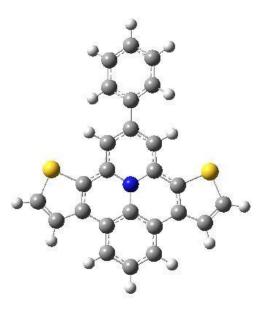
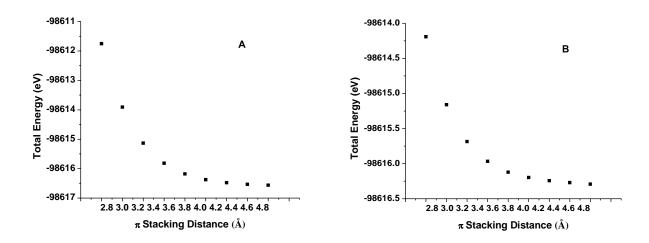


Figure 4 – 2-D ¹H-¹H COSY plot of the 2-phenylbenzo[ij]pyrido[2,1,6-de]dithieno[3,2-b:2',3'-g] quinolizin-13-ium perchlorate (BPDTQClO₄) in (CD₃)₂CO


Structures and total energies of cationic dimers of PQP⁺ and BPDTQ⁺:


Figure 5 – Structure of the cationic dimer of PQP⁺ in the parallel conformation, obtained from x-ray measurements (D. Wu, W. Pisula, V. Enkelmann, X. Feng, K. Müllen, *J. Am. Chem. Soc.*, 2009, **131**, 9620. ja902420u si 002.cif). Single-point calculation employing a DFT PBE0/6-31G(d) method, and the PCM model to mimic the aqueous medium yielded a total energy of -2337.89377692 hartrees, corresponding to -1467049.4 kcal.mol⁻¹.

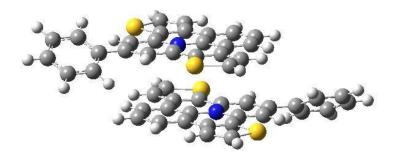

Figure 6 - Structure of the cationic dimer of PQP⁺ in the antiparallel conformation, obtained from x-ray measurements (D. Wu, W. Pisula, V. Enkelmann, X. Feng, K. Müllen, *J. Am. Chem. Soc.*, 2009, **131**, 9620. ja902420u si 003.cif). Single-point calculation employing a DFT PBE0/6-31G(d) method, and the PCM model to mimic the aqueous medium yielded a total energy of -2337.90080034 hartrees, corresponding to – 1467053.8 kcal.mol⁻¹.

Figure 7 – Structure of the monomeric cation of BPDTQ⁺, optimized in the gas phase with the DFT B3LYP/6-31G(d) method, with a total energy of -1812.06359 hartrees.

Figure 8 – Variation of the calculated heat of formation of the antiparallel (A) and parallel (B) BPDTQ⁺ dimer, as a function of the distance between the two monomeric units. Total energies were obtained from single-point calculations employing the optimized structure of the monomer of Figure 7, and varying the distance between the two monomeric units.

Figure 9 - Structure of the cationic dimer of BPDTQ $^+$ in the parallel conformation, with a distance between the two parallel rings of 4 Å. Single-point calculation employing a DFT PBE0/6-31G(d) method, and the PCM model to mimic the aqueous medium yielded a total energy of -3621.28232801 hartrees, corresponding to $-2272387.3~\text{kcal.mol}^{-1}$.

Figure 10 - Structure of the cationic dimer of BPDTQ $^+$ in the antiparallel conformation, with a distance between the two parallel rings of 4 Å. Single-point calculation employing a DFT PBE0/6-31G(d) method, and the PCM model to mimic the aqueous medium yielded a total energy of -3621.27731597 hartrees, corresponding to -2272384.1 kcal.mol $^{-1}$.