Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

## **Supporting Information**

## Silver coated magnetic microflowers as an efficient and recyclable catalyst for catalytic reduction

Kehan Zhang<sup>‡</sup>,<sup>a</sup> Chongwen Wang<sup>‡</sup>,<sup>ab</sup> Zhen Rong,<sup>a</sup> Rui Xiao,<sup>a\*</sup> Zhe Zhou,<sup>a\*</sup> and Shengqi Wang<sup>ab\*</sup>

<sup>a</sup> Beijing Institute of Radiation Medicine, Beijing 100850, PR China. E-mail: ruixiao203@sina.com, zhouzhe@bmi.ac.cn, sqwang@bmi.ac.cn.

<sup>b</sup>.College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China.

<sup>‡</sup> These authors contributed equally to this work.



Fig. S1 Zeta potentials of (a) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and (b) Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Ag seed particles in aqueous solution.



Fig. S2 EDS spectrum of (a)  $Fe_3O_4@SiO_2$  particles, (b)  $Fe_3O_4@SiO_2-Ag$  seed and (c)  $Fe_3O_4@SiO_2@Ag$  microflowers.



Fig. S3 TEM images of (a)  $Fe_3O_4@SiO_2$ -Ag seed particles with small Ag NPs (< 10 nm), (b) the corresponding  $Fe_3O_4@SiO_2@Ag$  microcomposites. Sparse Ag petals were observed on the surface of  $Fe_3O_4@SiO_2@Ag$  microcomposites, suggesting the too small Ag NPs on the  $Fe_3O_4@SiO_2$ -Ag seed particles are unsuitable for the fabrication of highly branched Ag shell.



Fig. S4 TEM image of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Ag microflowers synthesized without PVP.



Fig. S5 (a) The general reaction steps for reduction of 4-NP to 4-AP. (b) The change of the corresponding color in

each step for reduction of 4-NP to 4-AP.



Fig. S6 TGA curves of highly-banched Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Ag microflowers (a) before and (b) after six catalytic cycles.



Fig. S7 SEM images of highly-banched  $Fe_3O_4@SiO_2@Ag$  microflowers (a) before and (b) after six catalytic cycles.