Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

A smart two-photon fluorescent platform based on desulfurization-cyclization: phthalimide-rhodamine chemodosimeter for Hg²⁺, NIR emission at 746 nm and through-bond energy transfer

Shan-kun Yao^a, Ying Qian^{a,*}, Zheng-qing Qi^b, Chang-gui Lv^b, Yi-ping Cui^b

a. School of Chemistry and Chemical Engineering, Southeast University, Nanjing,

211189, China, E-mail: yingqian@seu.edu.cn

b. Advanced Photonics Center, Southeast University, Nanjing, 211189, China, E-mail:

cyp@seu.edu.cn

*Corresponding author: E-mail address: <u>yingqian@seu.edu.cn</u>

Fig. S1. ¹H-NMR spectrum of CyRSN.

Fig. S2. ¹³C-NMR spectrum of CyRSN.

Fig. S3. MS spectrum of CyRSN.

Fig. S4. ¹H-NMR spectrum of M₂.

Fig. S5. ¹³C-NMR spectrum of M₂.

Fig. S6. MS spectrum of M₂.

Fig. S7. ¹H-NMR spectrum of $M_3(CyR)$.

Fig. S8. ¹³C-NMR spectrum of M₃ (CyR).

Fig. S9. ¹H-NMR spectrum of **NG-ML**.

Fig. S10. The linear relationship between the fluorescence intensity of probe at 746 nm and Hg²⁺ in concentration within the range 0-10 μ M and 30-50 μ M.

Fig. S11. (a) Fluorescence ratio response (F746 nm/F540 nm) of free CyRSN (10 μ M) and after addition of Hg²⁺ (30 μ M) in a PBS buffer-MeOH (v/v = 50/50, 50 mM PBS) solution as a function of different pH values. The excitation wavelength was 390 nm; (b) time-dependence on the fluorescence intensity at 746 nm of CyRSN (10 μ M) upon addition of 2.0 equiv. of Hg2+ at room temperature; in EtOH/PBS buffer solutions (pH 7.4,v/v, 1 : 1). Excitation wavelength was 670 nm.

Fig. S2. ¹³C-NMR spectrum of CyRSN.

Fig. S4. ¹H-NMR spectrum of M₂.

Fig. S5. ¹³C-NMR spectrum of M_2 .

Fig. S7. ¹H-NMR spectrum of M₃ (CyR).

Fig. S9. ¹H-NMR spectrum of NG-ML.

Fig. S10. The linear relationship between the fluorescence intensity of probe at 746 nm and Hg²⁺

in concentration within the range (a) 0-10 μ M and (b) 30-50 μ M.

Fig. S11. (a) Fluorescence ratio response ($F_{746 \text{ nm}}/F_{540 \text{ nm}}$) of free CyRSN (10 µM) and after addition of Hg²⁺ (30 µM) in a PBS buffer-MeOH (v/v = 50/50, 50 mM PBS) solution as a function of different pH values. The excitation wavelength was 390 nm; (b) time-dependence on the fluorescence intensity at 746 nm of CyRSN (10 µ M) upon addition of 2.0 equiv. of Hg²⁺ at room temperature; in EtOH/PBS buffer solutions (pH 7.4,v/v, 1 : 1). Excitation wavelength was 670 nm.