Supporting Information for

Highly selective turn-on probe for H₂S with imaging applications in *vitro* and in *vivo*

Natesan Thirumalaivasan, Parthiban Venkatesan, Shu-Pao Wu*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

Table of contents

Figure S1. ¹H-NMR spectra of compound 1-aminopyrene in DMSO-d₆.

Figure S2. ¹³C-NMR spectra of compound 1-aminopyrene in DMSO-d₆.

Figure S3. ESI-MS spectrum of 1-aminopyrene with Na₂S.

Figure S4. ¹H-NMR spectra of compound PyN₃ in DMSO-d₆.

Figure S5. ¹³C-NMR spectra of compound PyN₃ in DMSO-d₆.

Figure S6. EI-MS spectrum of PyN₃.

Figure S7. UV-Vis absorption spectra of PyN_3 (10 μ M) with gradual addition (0–150 μ M) of H₂S in H₂O–DMSO (v/v = 20/80).

Figure S8. Time-dependent fluorescence intensity changes of PyN_3 (10µM) upon addition of H_2S (150 µM). The spectra were recorded in pH 7.4 H_2O –DMSO (v/v = 20/80) at 25 °C under excitation wavelength was 410 nm.

Figure S9. Calibration curve of PyN₃ (10 μ M) with gradual addition of H₂S in H₂O–DMSO (v/v = 20/80). The excitation wavelength was 410 nm .

Figure S10. HPLC analysis of (a) compound **PyN**₃, (b) **PyN**₃+Na₂S and (c) the reaction product of **PyN**₃+Na₂S.

Fig. S11 The effect of pH on the fluorescence changes of PyN_3 (10 μ M) and after the addition of H₂S (150 μ M) in a H₂O–DMSO (v/v = 20/80, 0.2 mM PBS) solution. The excitation wavelength was 410 nm.

Figure S1. ¹H-NMR spectra of compound 1-aminopyrene in DMSO-d₆.

Figure S2.¹³C-NMR spectra of compound 1-aminopyrene in DMSO-d₆.

Figure S3. ESI-MS spectrum of 1-aminopyrene with Na₂S.

Figure S5. ¹³C-NMR spectra of compound PyN₃ in DMSO-d₆.

Figure S6. EI-MS spectrum of PyN₃.

Figure S7. UV-Vis absorption spectra of PyN_3 (10 μ M) with gradual addition (0–150 μ M) of H₂S in H₂O–DMSO (v/v = 20/80).

Figure S8. Time-dependent fluorescence intensity changes of PyN_3 (10µM) upon addition of H_2S (150 µM). The spectra were recorded in pH 7.4 H_2O –DMSO (v/v = 20/80) at 25 °C under excitation wavelength was 410 nm.

Figure S9. Calibration curve of PyN_3 (10 μ M) with gradual addition of H_2S in H_2O –DMSO (v/v = 20/80). The excitation wavelength was 410 nm.

Figure S10. HPLC analysis of (a) compound PyN_3 , (b) PyN_3 +Na₂S and (c) the reaction product of PyN_3 +Na₂S.

Fig. S11 The effect of pH on the fluorescence changes of PyN_3 (10 μ M) and after the addition of H_2S (150 μ M) in a H_2O -DMSO (v/v = 20/80, 0.2 mM PBS) solution. The excitation wavelength was 410 nm.