Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

## Supporting Information

Novel synthesis of Ag decorated  $TiO_2$  anchored on zeolites derived from coal fly ash for the photodegradation of

bisphenol-A

Lerato. Hlekelele, Paul.J. Franklyn, Farai Dziike and S.H. Durbach

RSC New Journal Of Chemistry

(S1) Composition of CFA as determined by XRF

| Mineral                        | %/mass |  |  |
|--------------------------------|--------|--|--|
| SiO <sub>2</sub>               | 58.14  |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 28.79  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.57   |  |  |
| FeO                            | 4.64   |  |  |
| MnO                            | 0.047  |  |  |
| MgO                            | 1.04   |  |  |
| CaO                            | 3.5    |  |  |
| Na <sub>2</sub> O              | 0.05   |  |  |
| K <sub>2</sub> O               | 0.77   |  |  |
| TiO <sub>2</sub>               | 1.57   |  |  |
| P <sub>2</sub> O <sub>5</sub>  | 0.7    |  |  |
|                                |        |  |  |



(S2) EDS plots showing chemical composition of (a) CFA and (b) CFA\_Zeo.

## (S3) EDS Elemental composition of CFA and CFA\_Zeo

| Sample  | Si/Na | Si/Al |
|---------|-------|-------|
| CFA     | 22.7  | 1.57  |
| CFA_Zeo | 1.31  | 1.11  |



(S4) (a)TEM image of Ag/TiO\_/CFA\_Zeo(15 %) and (b) SEM image of Ag/TiO\_/CFA\_Zeo(15 %).

(S5)



(S5) Photodegradation of BPA under visible light

(S6) Mass of Ag/TiO $_2$ /CFA\_Zeo(15 %) used for the photodegradation of BPA over 7 experiments

| Experiment number | Mass of sample (mg) |
|-------------------|---------------------|
| 1                 | 25.08               |
| 2                 | 24.92               |
| 3                 | 24.32               |
| 4                 | 24.06               |
| 5                 | 23.88               |
| 6                 | 23.56               |
| 7                 | 23.33               |
|                   |                     |

(S7)

| Molecular structure | Molecule name                                          | Retention time<br>(min) | m/z (negative mode) | References |
|---------------------|--------------------------------------------------------|-------------------------|---------------------|------------|
| HO CONTRACTOR       | 3-(4-hydroxyphenyl)-3-<br>methyl-2-oxobutanoic<br>acid | 5.88                    | 207                 | 13         |
| но                  | 4-(prop-1-en-2-yl)phenol                               | 8,02                    | 133                 | 3-5        |
| НО                  | 4-hydroxybenzaldehyde                                  | 9,44                    | 121                 | 1-3,6      |
| НО                  | 1-(-4-hydroxyphenyl)<br>ethanone                       | 13,22                   | 135                 | 3–5,7      |
| но                  | 4,4'-(propane-2,2-<br>diyl)diphenol (BPA)              | 15,22                   | 227                 |            |



(S8) HPLC-UV chromatogram of BPA photodegraded using Ag/TiO<sub>2</sub>/CFA\_Zeo(15%)

## References

- 1 S. Kaneco, M. A. Rahman, T. Suzuki, H. Katsumata and K. Ohta, *J. Photochem. Photobiol. A Chem.*, 2004, **163**, 419–424.
- 2 H. Katsumata, S. Kawabe, S. Kaneco, T. Suzuki and K. Ohta, J. Photochem. Photobiol. A Chem., 2004, 162, 297–305.
- 3 Y. Ohko, A. Isao, N. Chisa, T. Tetsu, Y. Tsuyoshi, N. Tetsuto and F. Yoshinobu, Kubota, and Akira, *Environ. Sci. Technol.*, 2001, **35**, 2365–2368.
- 4 R. A. Torres, C. Pétrier, E. Combet, M. Carrier and C. Pulgarin, *Ultrason. Sonochem.*, 2008, **15**, 605–611.
- 5 S. Fukahori, H. Ichiura, T. Kitaoka and H. Tanaka, *Appl. Catal. B Environ.*, 2003, **46**, 453–462.
- 6 N. Watanabe, S. Horikoshi, H. Kawabe, Y. Sugie, J. Zhao and H. Hidaka, *Chemosphere*, 2003, **52**, 851–859.
- 7 C. Guo, M. Ge, L. Liu, G. Gao, Y. Feng and Y. Wang, *Environ. Sci. Technol.*, 2010, 44, 419–425.