Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Triazoloquinoxaline Ligand and its Polymeric 1D Silver(I) complex

Synthesis, Structure, and Antimicrobial activity

Morsy A. M. Abu-Youssef^[a*], Saied M. Soliman^[a], Ayman El-Faham^[a,b], Jörg Albering^[c], Mona M. Sharaf^[d],

Yousry M. Gohar^[e], Eliano Diana ^[f], Karl Gatterer^[g] and Sidney F.A Kettle^[h]

Supplementary informations

 Table S1. Crystal data and structure refinement for compounds 1 and 2.

	L (1)	[Ag ₂ L(NO ₃) ₂] _n (2)
Empirical formula	C ₁₈ H ₁₇ N ₅	$C_{18}H_{17}N_7Ag_2O_6$
Formula weight	303.37	643.13
Temperature	298(2) K	298(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Monoclinic
Space group	P1	P21/n
Unit cell dimensions	a = 11.496(2) Å b = 12.436(3) Å c = 13.615(3) Å α = 94.96(3)° β = 110.83(3)° γ = 116.22(3)°	a = 14.932(3) Å b = 10.070(2) Å c = 15.112(3) Å α = 90° β =113.25(3)° γ = 90°
Volume	1561.6(10) Å ³	2087.8(9) Å ³
Z	4	4
Density (calculated)	1.290 Mg/m ³	2.046 Mg/m ³
Absorption coefficient	0.081 mm ⁻¹	1.929 mm ⁻¹
F(000)	640	1264
Theta range for data collection	3.09 to 22.45°	2.93 to 25.00°
Index ranges	-11<=h<=12 -13<=k<=13 -14<=l<=14	-17<=h<=17 -10<=k<=10 -17<=l<=17
Reflections collected	6891	5413
Independent reflections	4030 [R(int) = 0.0547]	3369 [R(int) = 0.0661]
Completeness up to theta =	22.45°, 98.8 %	25.00°, 92.0 %
Absorption correction	Semi-empirical from equivalents	

Refinement method	Full-matrix least-squares on F2		
Data / restraints / parameters	4030 / 0 / 420	3369 / 0 / 295	
Goodness-of-fit on F ²	1.007	1.012	
Final R indices [I>2o(I)]	R1 = 0.0515, wR2 = 0.1009	R1 = 0.0658, wR2 = 0.1585	
R indices (all data)	R1 = 0.1170, wR2 = 0.1257	R1 = 0.1007, wR2 = 0.1819	
Extinction coefficient	0.0078(12)		
Largest diff. peak and hole	0.154 and -0.144 e.Å ⁻³	1.267 and -1.207 e.Å ⁻³	

Table S2 Selected bond lengths [Å] and angles [°] for (1). The values for only one molecule (A) in the asymmetric unit are given; the parameters of the second molecular unit are comparable.

C(1)-N(3)1.382(4)C(4)-N(4)1.402(4)C(13)-C(14)1.379(5)C(1)-N(5)1.385(4)C(5)-C(6)1.387(4)C(13)-C(18)1.381(5)C(2)-N(2)1.321(4)C(5)-N(3)1.403(4)C(14)-C(15)1.385(5)C(2)-N(3)1.376(4)C(6)-C(7)1.367(4)C(15)-C(16)1.361(5)C(2)-C(3)1.430(5)C(7)-C(8)1.373(5)C(16)-C(17)1.366(5)C(3)-N(4)1.294(4)C(8)-C(9)1.368(5)C(16)-C(17)1.366(5)C(3)-C(12)1.511(4)C(10)-N(5)1.465(4)N(1)-N(2)1.398(4)	 1.518(5)	C(12)-C(13)	1.397(4)	C(4)-C(5)	1.315(4)	C(1)-N(1)
C(1)-N(5)1.385(4)C(5)-C(6)1.387(4)C(13)-C(18)1.381(5)C(2)-N(2)1.321(4)C(5)-N(3)1.403(4)C(14)-C(15)1.385(5)C(2)-N(3)1.376(4)C(6)-C(7)1.367(4)C(15)-C(16)1.361(5)C(2)-C(3)1.430(5)C(7)-C(8)1.373(5)C(16)-C(17)1.366(5)C(3)-N(4)1.294(4)C(8)-C(9)1.368(5)C(16)-C(17)1.366(5)C(3)-C(12)1.511(4)C(10)-N(5)1.465(4)C(17)-C(18)1.377(5)C(4)-C(9)1.395(5)C(11)-N(5)1.466(4)N(1)-N(2)1.398(4)	1.379(5)	C(13)-C(14)	1.402(4)	C(4)-N(4)	1.382(4)	C(1)-N(3)
C(2)-N(2) 1.321(4) C(5)-N(3) 1.403(4) C(14)-C(15) 1.385(5) C(2)-N(3) 1.376(4) C(6)-C(7) 1.367(4) C(15)-C(16) 1.361(5) C(2)-C(3) 1.430(5) C(7)-C(8) 1.373(5) C(16)-C(17) 1.366(5) C(3)-N(4) 1.294(4) C(8)-C(9) 1.368(5) C(16)-C(17) 1.366(5) C(3)-C(12) 1.511(4) C(10)-N(5) 1.465(4) N(1)-N(2) 1.398(4)	1.381(5)	C(13)-C(18)	1.387(4)	C(5)-C(6)	1.385(4)	C(1)-N(5)
C(2)-N(3) 1.376(4) C(6)-C(7) 1.367(4) C(15)-C(16) 1.361(5) C(2)-C(3) 1.430(5) C(7)-C(8) 1.373(5) C(16)-C(17) 1.366(5) C(3)-N(4) 1.294(4) C(8)-C(9) 1.368(5) C(16)-C(17) 1.366(5) C(3)-C(12) 1.511(4) C(10)-N(5) 1.465(4) N(1)-N(2) 1.398(4)	1.385(5)	C(14)-C(15)	1.403(4)	C(5)-N(3)	1.321(4)	C(2)-N(2)
C(2)-C(3) 1.430(5) C(7)-C(8) 1.373(5) C(16)-C(17) 1.366(5) C(3)-N(4) 1.294(4) C(8)-C(9) 1.368(5) C(16)-C(17) 1.366(5) C(3)-C(12) 1.511(4) C(10)-N(5) 1.465(4) C(17)-C(18) 1.377(5) C(4)-C(9) 1.395(5) C(11)-N(5) 1.466(4) N(1)-N(2) 1.398(4)	1.361(5)	C(15)-C(16)	1.367(4)	C(6)-C(7)	1.376(4)	C(2)-N(3)
C(3)-N(4) 1.294(4) C(8)-C(9) 1.368(5) C(16)-C(17) 1.366(5) C(3)-C(12) 1.511(4) C(10)-N(5) 1.465(4) C(17)-C(18) 1.377(5) C(4)-C(9) 1.395(5) C(11)-N(5) 1.466(4) N(1)-N(2) 1.398(4)	1.366(5)	C(16)-C(17)	1.373(5)	C(7)-C(8)	1.430(5)	C(2)-C(3)
C(3)-C(12) 1.511(4) C(10)-N(5) 1.465(4) C(17)-C(18) 1.377(5) C(4)-C(9) 1.395(5) C(11)-N(5) 1.466(4) N(1)-N(2) 1.398(4)	1.366(5)	C(16)-C(17)	1.368(5)	C(8)-C(9)	1.294(4)	C(3)-N(4)
C(4)-C(9) 1 395(5) $C(11)-N(5)$ 1 466(4) $N(1)-N(2)$ 1 398(4)	1.377(5)	C(17)-C(18)	1.465(4)	C(10)-N(5)	1.511(4)	C(3)-C(12)
	1.398(4)	N(1)-N(2)	1.466(4)	C(11)-N(5)	1.395(5)	C(4)-C(9)
N(1)-C(1)-N(3) 110.4(3) C(4)-C(5)-N(3) 115.3(3)			115.3(3)	C(4)-C(5)-N(3)	110.4(3)	N(1)-C(1)-N(3)
N(1)-C(1)-N(5) 127.5(3) C(7)-C(6)-C(5) 119.1(4)			119.1(4)	C(7)-C(6)-C(5)	127.5(3)	N(1)-C(1)-N(5)
N(3)-C(1)-N(5) 122.1(3) C(6)-C(7)-C(8) 120.5(4)			120.5(4)	C(6)-C(7)-C(8)	122.1(3)	N(3)-C(1)-N(5)
N(2)-C(2)-N(3) 110.8(3) C(9)-C(8)-C(7) 120.7(4)			120.7(4)	C(9)-C(8)-C(7)	110.8(3)	N(2)-C(2)-N(3)
N(2)-C(2)-C(3) 129.7(3) C(8)-C(9)-C(4) 120.5(4)			120.5(4)	C(8)-C(9)-C(4)	129.7(3)	N(2)-C(2)-C(3)
N(3)-C(2)-C(3) 119.4(3) C(3)-C(12)-C(13) 109.0(3)			109.0(3)	C(3)-C(12)-C(13)	119 4(3)	N(3)-C(2)-C(3)
			107.0(3)		.17.7(5)	
N(4)-C(3)-C(2) 121.4(3) C(14)-C(13)-C(18) 117.7(4)			117.7(4)	C(14)-C(13)-C(18)	121.4(3)	N(4)-C(3)-C(2)

N(4)-C(3)-C(12)	119.9(3)	C(14)-C(13)-C(12)	121.8(4)	
C(2)-C(3)-C(12)	118.6(3)	C(18)-C(13)-C(12)	120.4(3)	
C(9)-C(4)-C(5)	117.7(3)	C(13)-C(14)-C(15)	120.6(4)	
C(9)-C(4)-N(4)	118.3(4)	C(16)-C(15)-C(14)	121.0(4)	
C(5)-C(4)-N(4)	124.0(3)	C(15)-C(16)-C(17)	118.9(4)	
C(6)-C(5)-C(4)	121.3(3)	C(16)-C(17)-C(18)	120.6(4)	
C(6)-C(5)-N(3)	123.4(3)	C(17)-C(18)-C(13)	121.2(3)	

Table S3 Selected bond lengths [Å] and angles [°] for (2). Only bond angles involving silver atoms and those of the nitrate ions are listed.

Ag(1)-N(2)#1	2.243(6)		Ag(2)-N(1)	2.239(6)	
Ag(1)-N(4)	2.264(6)		Ag(2)-O(4)	2.338(8)	
Ag(1)-O(1)	2.369(7)		Ag(2)-O(1)#2	2.389(7)	
Ag(1)-C(13)	2.717(8)		Ag(2)-O(5)	2.610(7)	
Ag(1)-C(14)	2.897(9)		Ag(2)-O2A	2.82(2)	
Ag(1)-C(18)	3.002(9)		Ag(2)-C(16)	3.085(9)	
N(1)-N(2)	1.396(8)	N(3)-C(5)	1.420(9)	C(6)-C(7)	1.378(13)
N(2)-C(2)	1.301(9)	N(4)-C(3)	1.302(9)	C(7)-C(8)	1.376(13)
N(3)-C(2)	1.355(9)	C(4)-C(5)	1.385(11)	C(8)-C(9)	1.370(13)
N(3)-C(1)	1.401(9)	C(5)-C(6)	1.396(12)	C(12)-C(13)	1.527(10)
O(1)-N(6)	1.276(10)	N(4)-C(4)	1.416(10)	C(13)-C(18)	1.374(11)
O(2A)-N(6)	1.262(18)	N(5)-C(1)	1.373(10)	C(13)-C(14)	1.380(12)
O(3A)-N(6)	1.260(20)	N(5)-C(11)	1.445(11)	C(14)-C(15)	1.392(13)
O(4)-N(7)	1.258(9)	N(5)-C(10)	1.459(11)	C(15)-C(16)	1.343(15)
O(5)-N(7)	1.223(10)	C(2)-C(3)	1.444(10)	C(16)-C(17)	1.378(14)
O(6)-N(7)	1.218(9)	C(3)-C(12)	1.475(11)	C(17)-C(18)	1.368(12)
N(1)-C(1)	1.311(10)	C(4)-C(9)	1.367(11)	N(1)-C(1)	1.311(10)

N(2)#1-Ag(1)-N(4)	138.7(2)	N(2)-N(1)-Ag(2)	117.0(5)
N(2)#1-Ag(1)-O(1)	93.5(3)	C(2)-N(2)-Ag(1)#2	134.6(5)
N(4)-Ag(1)-O(1)	122.9(2)	N(1)-N(2)-Ag(1)#2	118.0(5)
N(1)-Ag(2)-O(4)	134.4(2)	C(3)-N(4)-Ag(1)	120.7(5)
N(1)-Ag(2)-O(1)#2	96.0(2)	C(4)-N(4)-Ag(1)	115.6(5)
O(4)-Ag(2)-O(1)#2	126.4(3)	O(2A)-N(6)-O(3A)	124.0(12)
N(6)-O(1)-Ag(1)	133.7(6)	O(2A)-N(6)-O(1)	109.1(11)
N(6)-O(1)-Ag(2)#1	113.4(5)	O(3A)-N(6)-O(1)	126.9(11)
Ag(1)-O(1)-Ag(2)#1	94.8(2)	O(6)-N(7)-O(5)	121.7(9)
N(7)-O(4)-Ag(2)	103.1(6)	O(6)-N(7)-O(4)	122.2(8)
C(1)-N(1)-Ag(2)	131.0(5)	O(5)-N(7)-O(4)	116.1(8)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y+1/2,-z+3/2 #2 -x+1/2,y-1/2,-z+3/2