Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Three novel mononuclear Mn(III) based magnetic materials with square pyramidal versus octahedral

geometries⁺

Malay Dolai^a, Abhishake Mondal ^{b, c, d} Jun-Liang Liu^{c, d} and Mahammad Ali*^a

^aDepartment of Chemistry Jadavpur University, Kolkata 700 032, India; Fax: 91-33-2414-6223. E-mail: <u>mali@chemistry.jdvu.ac.in</u> ^bInstitut für Anorganische Chemie Karlsruher Institut für Technologie (KIT) Engesserstr. 15 Geb. 30.45, 76131 Karlsruhe (Germany). ^cCentre de Recherche Paul Pascal (CRPP), CNRS, UPR 8641, F-33600 Pessac, France. ^dUniversité de Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France.

Fig. S1: The H-bonding direction and CH $\cdots\pi$ interactions observed in Complex **1** (above). The molecular view of 2D network through H-bonding and 3D framework through H-bonding interactions in complex **1** (below).

Fig. S2: The H-bonding direction and CH… π interactions observed in complex 2.

Fig. S3: The molecular view of H-bonding (orange dot line), $CH\cdots\pi$ (green dot line) and $\pi\cdots\pi$ (yellow dot line) interactions in **3** (above). The 3D framework through H-bonding and $CH\cdots\pi$ interactions in complex **3** (below).

Fig. S4: IR spectrum of complex 1.

Fig. S6: IR spectrum of complex 3.

The experimental magnetic susceptibility and magnetization data of **1**, **2** and **3** were simultaneously analyzed by using the appropriate spin Hamiltonian for a dinuclear model [Eq. (1)]

$$\hat{H} = -2J\hat{S}_{1}\hat{S}_{2} + D(\hat{S}_{1,z}^{2} + \hat{S}_{2,z}^{2}) + \mu_{B}g_{iso}H(\hat{S}_{1} + \hat{S}_{2})$$
(1)

Fig. S7: Temperature dependence of χT for **1** (\bigcirc) under an applied field of 1000 Oe (up left), the solid line is the best-fit curve (see text). Field dependence of the magnetization as M vs H/T (up right) and M vs H (down) plots for **1** between 2 and 5 K, the solid lines are the best-fit curves (up right).

Fig. S8: Temperature dependence of χT for **2** (\bigcirc) under an applied field of 1000 Oe (up left), the solid line is the best-fit curve (see text). Field dependence of the magnetization as M vs H/T (up right) and M vs H (down) plots for **2** between 2 and 5 K, the solid lines are the best-fit curves (up right).

Fig. S9: Temperature dependence of χT for **3** (\bigcirc) under an applied field of 1000 Oe (up left), the solid line is the best-fit curve (see text). Field dependence of the magnetization as M vs H/T (up right) and M vs H (down) plots for **2** between 2 and 5 K, the solid lines are the best-fit curves (up right).

Fig. S12. Frequency dependence of the real (χ' , left) and imaginary (χ'' , right) parts of the *ac* susceptibility for a polycrystalline sample of **2** at 1.8 K at different *dc*-field between 0 and 1000 Oe. Solid lines are eye guides.

Fig. S13. Temperature (left) and frequency (right) dependence of the real (χ' , top) and imaginary (χ'' , bottom) components of the *ac* susceptibility at different *ac* frequencies between 1 and 1500 Hz and different temperatures between 1.8 and 8 K, respectively, with a 3 Oe *ac* field for a polycrystalline sample of **3** in a zero *dc*-field.

Fig. S14. Frequency dependence of the real (χ' , left) and imaginary (χ'' , right) parts of the *ac* susceptibility for a polycrystalline sample of **3** at 1.8 K at different *dc*-field between 0 and 3000 Oe. Solid lines are eye guides.